способ получения крупносферического углеродного носителя для катализаторов

Классы МПК:B01J37/08 термообработка
B01J32/00 Носители катализаторов вообще
B01J21/18 углерод
Автор(ы):, , ,
Патентообладатель(и):Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) (RU)
Приоритеты:
подача заявки:
2008-04-07
публикация патента:

Изобретение относится к технологии получения углеродных носителей различного рода катализаторов и сорбентов. Описан способ получения крупносферического углеродного носителя для катализаторов, включающий нагрев движущегося слоя гранулированной сажи до температуры 800-900°С, подачу в него потока газообразных или парообразных углеводородов, уплотнение сажи путем термического разложения углеводородов на поверхности ее частиц с образованием пироуглерода до достижения насыпной плотности сажи 0,5-0,7 г/см3 , охлаждение массы материала и его рассев с выделением фракции гранул, которые подвергают повторному пиролитическому уплотнению с последующей активацией полученного продукта, отличающийся тем, что газообразные или парообразные углеводороды подают в слой сажи на первой и второй стадиях с различной объемной скоростью: на первой стадии - со скоростью 65-72 час-1, а на второй стадии - при температуре 650-750°С со скоростью 52-58 час-1, причем пиролитическому уплотнению на второй стадии подвергают гранулы размером 3,5-6,0 мм, а активацию материала ведут до достижения величины суммарного объема пор 0,3-0,7 см 3/г, при этом на второй стадии уплотнение пироуглеродом ведут до достижения насыпного веса гранул 0,88-0,95 г/см 3. Технический результат - получение носителя с более прочными и однородными по составу гранулами. 1 з.п. ф-лы.

Формула изобретения

1. Способ получения крупносферического углеродного носителя для катализаторов, включающий нагрев движущегося слоя гранулированной сажи до температуры 800-900°С, подачу в него потока газообразных или парообразных углеводородов, уплотнение сажи путем термического разложения углеводородов на поверхности ее частиц с образованием пироуглерода до достижения насыпной плотности сажи 0,5-0,7 г/см 3, охлаждение массы материала и его рассев с выделением фракции гранул, которые подвергают повторному пиролитическому уплотнению с последующей активацией полученного продукта, отличающийся тем, что газообразные или парообразные углеводороды подают в слой сажи на первой и второй стадиях с различной объемной скоростью: на первой стадии - со скоростью 65-72 ч-1, а на второй стадии - при температуре 650-750°С со скоростью 52-58 ч -1, причем пиролитическому уплотнению на второй стадии подвергают гранулы размером 3,5-6,0 мм, а активацию материала ведут до достижения величины суммарного объема пор 0,3-0,7 см 3/г.

2. Способ по п.1, отличающийся тем, что на второй стадии уплотнение пироуглеродом ведут до достижения насыпного веса гранул 0,88-0,95 г/см3.

Описание изобретения к патенту

Изобретение относится к технологии получения углеродных носителей различного рода катализаторов и сорбентов.

Известен способ получения углеродного гранулированного материала, включающий нагрев движущегося слоя предварительно классифицированной на фракции размером 0,2-1,0 мм, 1,0-3,0 мм и 3,0-6,0 мм гранулированной сажи во вращающемся горизонтальном реакторе, подачу в движущийся слой сажи газообразных или парообразных углеводородов с последующим их термическим разложением с осаждением пироуглерода на саже. При этом процесс идет при температуре 900-1030°С, 800-900°С и 750-800°С для каждой из указанных фракций соответственно. В производстве носителя катализаторов используется фракция 0,2-1,0 мм для суспензионных процессов и 2-3 мм для процессов в стационарном слое (патент РФ № 2106375, кл. С09С 1/60, оп. 10.03.1998).

Недостатком известного способа получения углеродного гранулированного материала является неравномерное уплотнение гранул фракции 3,0-6,0 мм по всему сечению, т.к. при температуре 750-800°С в одну стадию глубина проникновения углеводородов в поры и межчастичное пространство материала не превышает 1,5-2,0 мм. В этих условиях гранулы сажи уплотняются пироуглеродом лишь на половину объема и затем при активации гранула разрушается.

Известен способ получения углеродного носителя для катализаторов, который включает нагрев движущегося слоя гранулированной сажи, использующейся в качестве подложки, с удельной поверхностью 10-30 м2 /г и величиной адсорбции дибутилфталата 95-115 мл/100 г, и подачу в движущийся слой сажи газообразных или парообразных углеводородов, которые разлагаются на поверхности частиц сажи с образованием слоя пироуглерода. Данный процесс науглероживания гранулированной сажи ведут в две стадии. На первой стадии сажу уплотняют до достижения насыпной плотности 0,5-0,7 г/см3, после чего процесс останавливают, сажу охлаждают и подвергают рассеву с выделением фракции гранул размером 1,6-3,5 мм, которую затем нагревают и уплотняют пироуглеродом. При достижении насыпной плотности материала, равной 0,9-1,1 г/см3, осуществляют процесс активации. Активацию материала производят при температуре 800-900°С путем его контактирования с водяным паром или его смесью с продуктами горения топлива. Процесс ведут до получения продукта, имеющего суммарный объем пор, равный 0,2-1,7 см3/г (патент РФ № 2268774, кл. B01J 37/08, оп. 27.01.2006, прототип).

Недостатком известного способа получения углеродного носителя для катализаторов является проведение пиролитического уплотнения сажи на второй стадии при тех же условиях, что и на первой. Это ограничивает возможность равномерного объемного уплотнения сажи с размером гранул 3,5-6,0 мм до насыпной плотности выше 0,9 г/см3, необходимой для обеспечения требуемой прочности гранул после активации.

Целью настоящего изобретения является получение прочных и однородных по свойствам гранул углеродного носителя размером 3,5-6,0 мм. Материал с указанными свойствами используют в качестве носителя при приготовлении катализаторов для химических процессов, которые проводят в реакторах со стационарным слоем катализатора и низким гидравлическим сопротивлением слоя.

Предлагаемый способ получения крупносферического углеродного носителя для катализаторов включает нагрев движущегося слоя гранулированной сажи до температуры 800-900°С, подачу в него газообразных или парообразных углеводородов с объемной скоростью 65-72 час -1, уплотнение сажи путем термического разложения углеводородов на поверхности ее частиц с образованием пироуглерода до достижения насыпной плотности сажи 0,5-0,7 г/см3, охлаждение массы материала и его рассев с выделением крупоносферических гранул размером 3,5-6,0 мм. Выделенную фракцию крупных гранул подвергают повторному пиролитическому уплотнению при температуре 650-750°С и объемной скорости подачи углеводородов в слой сажи 52-58 час-1 до достижения насыпного веса 0,88-0,95 г/см3, с последующей активацией полученного углерод-углеродного материала до достижения величины суммарного объема пор 0,3-0,7 см3/г.

Отличительными признаками предлагаемого изобретения являются различные скорости подачи углеводородов в слой сажи на первой и второй стадиях пироуплотнения: на первой - с объемной скоростью 65-72 час-1, а на второй -

52-58 час-1, при этом процесс пироуплотнения на второй стадии ведут при температуре 650-750°С. Причем пиролитическому уплотнению подвергают гранулы размером 3,5-6,0 мм, а активацию материала производят до достижения величины суммарного объема пор 0,3-0,7 см3/г.

Другим отличительным признаком является ведение процесса уплотнения пироуглеродом на второй стадии до достижения насыпного веса 0,88-0,95 г/см 3.

Предлагаемая по заявке совокупность существенных признаков изобретения позволяет получить прочные и однородные по свойствам гранулы размером 3,5-6,0 мм.

Сложность равномерного объемного уплотнения сажи пироуглеродом при размере гранул 3,6-6,0 мм заключается в том, что при высокой температуре слоя гранул и высокой скорости подачи сырья в слой разложение углеводородов на поверхности частиц сажи в грануле и отложение пироуглерода происходят с высокой скоростью. При этом в первую очередь происходит зауглероживание межчастичного пространства в поверхностном слое гранулы и прилегающих к нему частиц сажи с образованием плотной пироуглеродной «корки», затрудняющей доступ углеводородов к центру гранулы. Это обстоятельство усугубляется при науглероживании гранул, размер которых превышает 3 мм. Поэтому равномерное пиролитическое уплотнение крупных гранул (более 3 мм) по всему объему может обеспечиваться при относительно низких температуре слоя гранул и скорости подачи углеводородов в слой. Однако при этом значительно увеличивается время процесса науглероживания и снижается производительность оборудования. Поэтому в предлагаемом способе на разных стадиях предусмотрены оптимальные для каждой стадии условия проведения процесса. На первой стадии процесс ведут при 800-900°С и скорости подачи углеводородного сырья 65-72 час-1 до насыпной плотности 0,5-0,7 г/см 3, т.е. до момента начала образования «корки» пироуглерода. Затем после классификации на второй стадии температуру слоя гранул снижают до 650-750°С, а скорость подачи углеводородов снижают до 52-58 час-1.

Это обеспечивает сокращение времени уплотнения сажи на первой стадии и равномерное отложение пироуглерода по всему объему гранул за счет снижения скорости отложения пироуглерода по сечению гранул на второй стадии процесса.

Снижение скорости подачи углеводородов на первой стадии ниже 65 час-1 приводит к снижению производительности процесса, а ее повышение выше 72 час-1 - к снижению степени превращения углеводородов и отложения пироуглерода на гранулах сажи.

Снижение температуры слоя гранул материала на второй стадии менее 650°С приводит к снижению производительности процесса, а ее повышение более 750°С - к неравномерному отложению пироуглерода в объеме гранул. Температурные условия процесса определяют оптимальную скорость подачи углеводородов в слой гранул сажи.

При этом снижение объемной скорости подачи углеводородов в слой гранул на второй стадии менее 52 час-1 приводит к увеличению времени науглероживания и, соответственно, к снижению производительности процесса, а увеличение объемной скорости подачи углеводородов более 58 час -1 может способствовать неполному разложению углеводородов на поверхности частиц.

Нижний предел размера гранул - 3,5 мм, подвергаемых пиролитическому уплотнению на второй стадии процесса, обусловлен ограничением гидравлического сопротивления слоя гранул катализатора в химических реакторах, а верхний предел - 6,0 мм, ограничен глубиной проникновения углеводородов в гранулы.

Нижний предел величины суммарного объема пор - 0,3 см3/г - обусловлен необходимостью развития удельной поверхности материала, а верхний предел - 0,7 см3/г, лимитируется требуемой прочностью гранул.

Нижний предел величины насыпного веса гранул - 0,88 г/см3 , до которого ведут уплотнение на второй стадии, обусловлен необходимостью получения гранул с высокой прочностью носителя, а его верхний предел - 0,95 г/см3, лимитирован производительностью процесса, т.к. дальнейшее повышение насыпного веса материала приводит к увеличению времени производства.

Эффективность предлагаемого способа и необходимость его осуществления для достижения цели иллюстрируется следующими примерами.

Пример 1 (по прототипу). В разогретый до 400 С вращающийся горизонтальный реактор загружают 200 кг гранулированной сажи с размером гранул 1,0-6,0 мм и удельной поверхностью 50 м2/г. Затем реактор разогревают до 850°С и в слой непрерывно перемешиваемых гранул сажи с объемной скоростью 69 час-1 подают пропан-бутановую смесь с содержанием 50% пропана и 50% бутана. После пиролитического уплотнения сажи в течение 20 часов до достижения величины насыпной плотности сажи 0,6 г/см3, науглероживание прекращают, материал охлаждают и классифицируют на отдельные фракции. Для дальнейшей работы отбирают фракцию с размером гранул 3,5-6,0 мм. Далее этот материал загружают в нагретый реактор, который снова разогревают до 850°С. Затем в слой непрерывно перемешиваемого материала с той же объемной скоростью подают пропан-бутановую смесь того же состава, что на первой стадии,. После науглероживания материала в течение 15 часов до достижения насыпного веса 1,0 г/см3, подачу углеводородов прекращают, а вместо нее в течение 15 часов подают паровоздушную смесь. Активацию материала проводят до получения материала с величиной суммарного объема пор, равной 0,55 см3/г.

Свойства полученного продукта:

насыпная плотность 0,40 г/см3
удельная поверхность 520,0 м2
суммарный объем пор 0,55 см3
прочность на раздавливание 60,0 кг/см
коэффициент вариации 0,63
(по показателю прочности на раздавливание) способ получения крупносферического углеродного носителя для   катализаторов, патент № 2361670

Коэффициент вариации, представляющий собой относительную меру рассеивания, выраженную в процентах, рассчитывали по стандартной методике.

Пример 2 (по предлагаемому изобретению). Процесс науглероживания сажи на первой стадии ведут по примеру 1, но на второй стадии понижают и температуру обработки до 700°С, и объемную скорость подачи пропан-бутановой смеси до

55 час-1. Процесс науглероживания на второй стадии ведут до достижения насыпного веса продукта, равного 0,90 г/см. Активацию материала проводят до получения материала с величиной суммарного объема пор, равной 0,50 см3/г.

Свойства полученного продукта:

насыпная плотность 0,52 г/см3
удельная поверхность 480 м2
суммарный объем пор 0,50 см3
прочность на раздавливание 120,0 кг/см
коэффициент вариации 0,52
(по показателю прочности на раздавливание) способ получения крупносферического углеродного носителя для   катализаторов, патент № 2361670

Таким образом, анализ приведенных выше данных показывает, что организация процесса получения крупносферического углеродного носителя для катализаторов с использованием предлагаемого изобретения позволяет получить продукт с более прочными и однородными по составу гранулами. Эти свойства позволяют использовать его в качестве эффективного носителя для катализаторов, применяющихся в различных химических процессах, таких как гидрирование жирных кислот, дегидрохлорирование метанола и других.

Класс B01J37/08 термообработка

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)

Класс B01J32/00 Носители катализаторов вообще

состав шихты для высокопористого керамического материала с сетчато-ячеистой структурой -  патент 2525396 (10.08.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
способ получения нитрата металла на подложке -  патент 2516467 (20.05.2014)
носитель электрокатализатора для низкотемпературных спиртовых топливных элементов -  патент 2504051 (10.01.2014)
носитель, содержащий муллит, для катализаторов для получения этиленоксида -  патент 2495715 (20.10.2013)
способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2493237 (20.09.2013)
геометрически классифицированный, имеющий определенную форму твердый носитель для катализатора эпоксидирования олефина -  патент 2492925 (20.09.2013)
способ изготовления текстильного катализатора (варианты) -  патент 2490065 (20.08.2013)
элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций -  патент 2489210 (10.08.2013)
способ получения углеродного носителя для катализаторов -  патент 2484899 (20.06.2013)

Класс B01J21/18 углерод

способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола -  патент 2505519 (27.01.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора -  патент 2497587 (10.11.2013)
способ модификации электрохимических катализаторов на углеродном носителе -  патент 2495158 (10.10.2013)
состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья -  патент 2492922 (20.09.2013)
способ электрохимического получения катализатора pt-nio/c -  патент 2486958 (10.07.2013)
Наверх