способ вакуумно-дугового нанесения покрытий

Классы МПК:C23C14/40 с помощью разряда переменного тока, например высокочастотного разряда
Автор(ы):,
Патентообладатель(и):ИНСТИТУТ ПРОБЛЕМ МАШИНОВЕДЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (RU)
Приоритеты:
подача заявки:
2007-11-06
публикация патента:

Изобретение относится к способу вакуумно-дугового нанесения покрытий и может быть использовано для получения газопоглотительных покрытий. Способ включает формирование потока металлической плазмы из катодных пятен вакуумно-дугового разряда. Нанесение покрытий проводят при постоянной начальной температуре катода для каждой последующей обрабатываемой партии деталей. Для этого периодически изменяют диаметр канавки, расположенной в теле катода со стороны системы охлаждения, в соответствии с выражением способ вакуумно-дугового нанесения покрытий, патент № 2361014 ,

где D1 - диаметр канавки, м; DK - диаметр катода, м; µ - коэффициент электропереноса, кг/Кл; Iразр - величина разрядного тока, А; способ вакуумно-дугового нанесения покрытий, патент № 2361014 - плотность материала катода, кг/м3; S K - площадь торцевой (рабочей) поверхности катода, м 2; L1 - ширина канавки, м; t - полное время наработки катода, затраченное на все предыдущие партии обрабатываемых деталей, с. В результате получают плазменный поток с постоянным составом генерируемой капельной фазы, обеспечивающий воспроизводимость результатов свойств, формируемых покрытий, и повышение качества покрытия. Кроме этого метод перспективен при получении антиэмиссионных покрытий на сеточных электродах мощных генераторных ламп. 1 ил.

способ вакуумно-дугового нанесения покрытий, патент № 2361014

Формула изобретения

Способ вакуумно-дугового нанесения покрытий на несколько партий деталей, включающий формирование потока металлической плазмы вакуумно-дугового разряда с использованием катода из напыляемого материала и с системой охлаждения и последовательное нанесение покрытий на каждую партию деталей, отличающийся тем, что на каждую последующую обрабатываемую партию деталей нанесение покрытий проводят при постоянной начальной температуре катода, для чего используют катод с выполненной в его теле со стороны расположения системы охлаждения канавкой, диметр которой периодически изменяют после нанесения покрытия на каждую партию деталей в соответствии с выражением

способ вакуумно-дугового нанесения покрытий, патент № 2361014

где D1 - диаметр канавки, м;

Dк - диаметр катода, м;

µ - коэффициент электропереноса, кг/Кл;

Iразр - величина разрядного тока, А;

способ вакуумно-дугового нанесения покрытий, патент № 2361014 - плотность материала катода, кг/м3;

Sк - площадь торцевой (рабочей) поверхности катода, м2;

L1 - ширина канавки, м;

t - полное время наработки катода, затраченное на все предыдущие партии обрабатываемых деталей, с.

Описание изобретения к патенту

Изобретение относится к вакуумно-плазменной технологии нанесения покрытий, преимущественно, к технологии нанесения газопоглотительных покрытий постоянного состава из потоков металлической плазмы вакуумно-дугового разряда.

К газопоглотителям относятся вещества с высокой поглощающей способностью по отношению к кислороду, водороду, азоту, углекислому газу, окиси углерода и др. газам, кроме инертных. Газопоглотители используются в вакуумных приборах для поглощения газов и паров, остающихся после откачки или выделяющихся при работе приборов в наполненных инертными газами приборах - для очистки наполняющего газа от посторонних примесей, а также в качестве рабочего вещества вакуумных насосов. Применяются испаряющиеся и неиспаряющиеся газопоглотители. К неиспаряющимся газопоглотителям относятся такие материалы, как тантал, титан, цирконий, барий, церий, лантан и ниобий, которые обычно наносятся в виде тонкодисперсных металлических порошков на поверхность деталей приборов или в другом случае из них изготовляют целую деталь.

Для получения газопоглотительного материала высокого качества необходимо, чтобы формируемый слой имел достаточно развитую рыхлую поверхность. Известен способ получения газопоглотительного материала на подложке, изложенный в патенте RU № 2153206, H01J 007/18 B01J 020/02, в котором приготовляется тонкий слой частиц газопоглотительного материала с размером частиц менее 150 мкм в диспергирующей среде. Покрытие осаждается слоем суспензии газопоглотительного материала металлического носителя посредством сериграфического способа. Сушка покрытия и обжиг осуществляются в вакууме при 1073способ вакуумно-дугового нанесения покрытий, патент № 2361014 1273К. Следует отметить сложность технологического процесса по изготовлению данного типа газопоглотительного слоя.

В работе Вильдгрубе В.Г., Церпицкий Б.Д., Шаронов В.Н., Шаталов С.М. Сетки мощных генераторных ламп.Проблемы, пути развития // Электронная техника. Сер. Электровакуумные и газоразрядные приборы. Вып.2 (125), 1989. С.43-51 показана возможность использования титановых покрытий на сеточных электродах генераторных ламп в качестве геттерирующей поверхности, активно способствующей поддержанию благоприятных вакуумных условий в приборе. Из представленных методов нанесения покрытий отмечаются пульверизация и катафорез с последующим спеканием в вакууме и плазменно-дуговое напыление титанового порошка. Отмечено, что наиболее эффективным методом для нанесения покрытий на изделия электронной техники является экологически чистый метод вакуумного плазменно-дугового напыления с помощью торцевых холловских плазменных ускорителей.

Наиболее близким к заявляемому способу по совокупности признаков является способ получения газопоглотительного титанового покрытия из металлической плазмы вакуумно-дугового разряда, представленный в статье Kuznezov V.G., Lisenkov A.A., Pavlova V.A., Vetrov N.Z. Influence of thermal cathode mode on properties of coatings reshaped settled, deposited from metal plasma of vacuum-arc dis-charge // Plasma Devices and operations. - 2002. - V.10. - № 3. - P.179-186.

В этом способе для нанесения титанового покрытия используют вакуумно-дуговые источники плазмы коаксиальной конструкции. Наличие в продуктах эрозии капельных образований приводит к получению шероховатого покрытия с развитой поверхностью. Данное условие оказывает благоприятное влияние на газопоглотительные свойства титановых покрытий.

Генерация капель происходит из-за образования на поверхности катода эрозионных кратеров. Максимальное количество капельных образований покидают рабочую поверхность катода под углом 20способ вакуумно-дугового нанесения покрытий, патент № 2361014 30° к его плоскости.

В рабочих режимах эксплуатации титановые покрытия представляют геттерирующую поверхность, активно способствующую поддержанию благоприятных вакуумных условий в приборе. Титан поглощает активные газы и удерживает их в широком температурном диапазоне, начиная от 473К. Сорбционная емкость титановых покрытий зависит от его толщины, шероховатости и пористости, и в значительной степени определяется технологическим режимом его получения.

Для изучения влияния капельных образований на газопоглощающие свойства титановые покрытия осаждались на молибденовые основания, согнутые в дугу. Расстояние от центра катода испарителя до каждого участка подложки было выдержано практически одинаковым. Поэтому каждому ее элементу соответствовал определенный угол способ вакуумно-дугового нанесения покрытий, патент № 2361014 между плоскостью рабочей поверхности катода и радиусом дуги подложки, проведенным из центра катода к данному участку. После нанесения покрытия подложку разрезали на пластины одинаковой ширины с кратностью угла способ вакуумно-дугового нанесения покрытий, патент № 2361014 в 5° в пределах от 0 до 90°. Исследование эффективной сорбционной емкости производилось на специальной вакуумной установке. Для этого использовался или метод постоянного объема, или метод порций, основанный на замере изменения давления дозированного количества воздуха в объеме в течение установленного времени в интервале температур от 290 до 990К.

Показано, что эффективная удельная емкость газопоглотителя q (суммарное количество поглощенного воздуха, отнесенное к его площади) зависит от угла ориентации подложки в пространстве относительно рабочей поверхности катода способ вакуумно-дугового нанесения покрытий, патент № 2361014 : максимальное газопоглощение соответствует максимуму распределения капельных образований в рабочем объеме: в диапазоне телесных углов от 10 до 30 относительно точки пересечения катода и его продольной оси.

Недостатком данного способа получения газопоглотительного покрытия является изменение параметров генерируемого плазменного потока в процессе работы испарителя, что приводит к неоднородности формируемых покрытий.

Уменьшение длины катода приводит к улучшению охлаждения рабочей поверхности катода и уменьшению его рабочей температуры, что уменьшает количество капельных образований, генерируемых в плазменный поток и попадающих на обрабатываемое изделие при формировании покрытия.

Как правило, с одного катода нанесение покрытий осуществляют на несколько партий деталей. После нанесения покрытий на первую партию деталей вакуумную камеру вскрывают, детали первой партии извлекают и загружают вторую партию деталей, снова осуществляют процесс нанесения покрытий и т.д. При переходе от одного процесса напыления к последующему наблюдается изменение свойств формируемых покрытий за счет изменения количества и размеров микрокапель материала катода, характерного для каждой партии деталей.

Задачей заявляемого изобретения является разработка вакуумно-дугового способа нанесения покрытий с постоянным составом генерируемой капельной фазы, обеспечивающего воспроизводимость свойств металлических покрытий для всех партий деталей, достигаемая за счет формирования плазменного потока при постоянной начальной температуре катода вакуумно-дугового источника плазмы коаксиальной конструкции.

Поставленная задача решается за счет того, что в способе вакуумно-дугового нанесения покрытий на несколько партий деталей, включающем формирование потока металлической плазмы вакуумно-дугового разряда с использованием катода из напыляемого материала и с системой охлаждения и последовательное нанесение покрытий на каждую партию деталей, на каждую последующую обрабатываемую партию деталей нанесение покрытий проводят при постоянной начальной температуре катода, для чего используют катод с выполненной в его теле со стороны расположения системы охлаждения канавкой, диаметр которой периодически изменяют после нанесения покрытий на каждую партию деталей в соответствии с выражением

способ вакуумно-дугового нанесения покрытий, патент № 2361014

где D1 - диаметр канавки, м;

DK - диаметр катода, м;

µ - коэффициент электропереноса, кг/Кл;

I разр - величина разрядного тока, А;

способ вакуумно-дугового нанесения покрытий, патент № 2361014 - плотность материала катода, кг/м3;

SK - площадь торцевой (рабочей) поверхности катода, м2;

L1 - ширина канавки, м;

t - полное время наработки катода, затраченное на все предыдущие партии обрабатываемых деталей, с.

Изменение геометрических размеров канавки в теле катода, расположенной со стороны системы охлаждения, позволяет для каждой последующей обрабатываемой партии деталей поддерживать начальную температуру катода на постоянном уровне, что обеспечивает

- воспроизводимость результатов свойств формируемых покрытий для всех партий изделий, полученных при использовании катода;

- повышение качества наносимого покрытия.

Изложенная сущность изобретения поясняется чертежом, на котором изображена конструкция цилиндрического катода: 1 - катод, изготовленный из материала напыляемого на обрабатываемые детали; 2 - рабочая поверхность катода диаметром Dк, на которой при существовании вакуумно-дугового разряда устанавливается рабочая температура Тк; 3 - охлаждаемая поверхность катода с установившейся рабочей температурой Тх; 4 - вытачиваемая канавка, шириной L1 и диаметром D1 с температурами со стороны рабочей поверхности Т1 и со стороны охлаждения Тх.

Количественный состав капельных образований связан с изменением в процессе работы интегральной температуры катода. Для постоянства фазового состава плазменного потока, выводимого в рабочий объем, по мере выработки материала катода необходимо для каждой последующей обрабатываемой партии деталей нанесение покрытия проводить при постоянной начальной температуре катода.

Авторами для решения данной задачи предлагается в процессе работы после каждого технологического процесса напыления изменять диаметр канавки 4 в теле катода 1, расположенной со стороны системы охлаждения, охлаждающей нерабочую поверхность катода 3.

Катод 1 выполняется из материала, напыляемого на обрабатываемое изделие. Катод через уплотнительную прокладку нерабочей поверхностью 3 вакуумно-плотно пристыковывается к системе охлаждения, имеющей температуру Тх. Дуговой разряд горит с противоположной стороны на рабочей поверхности катода 2, на которой в процессе работы устанавливается рабочая температура Тк.

За счет изменения диаметра канавки D1 открывается возможность управления тепловым режимом работы катода коаксиальной конструкции и перед каждым последующим процессом напыления задавать тепловой режим рабочей поверхности катода.

Рассмотрим режимы работы катода в различные моменты времени, соответствующие различной его длине.

В первоначальный момент времени, при t=0, когда длина катода максимальна - Lк0, a D1=0, для изменения температуры имеем следующие соотношения:

способ вакуумно-дугового нанесения покрытий, патент № 2361014

для 0способ вакуумно-дугового нанесения покрытий, патент № 2361014 zспособ вакуумно-дугового нанесения покрытий, патент № 2361014 L1;

способ вакуумно-дугового нанесения покрытий, патент № 2361014

для L1способ вакуумно-дугового нанесения покрытий, патент № 2361014 zспособ вакуумно-дугового нанесения покрытий, патент № 2361014 Lк0

Для текущего момента времени t будем иметь следующие изменения температуры:

способ вакуумно-дугового нанесения покрытий, патент № 2361014

для 0способ вакуумно-дугового нанесения покрытий, патент № 2361014 zспособ вакуумно-дугового нанесения покрытий, патент № 2361014 L1;

способ вакуумно-дугового нанесения покрытий, патент № 2361014

для L1способ вакуумно-дугового нанесения покрытий, патент № 2361014 zспособ вакуумно-дугового нанесения покрытий, патент № 2361014 LК

За время работы t, затраченное на все предыдущие партии нанесения покрытий, за счет испарения материала m=µIразр, (где µ - коэффициент электропереноса, Iразр - ток разряда, который постоянен на всем протяжении работы), длина катода от исходной Lк0 уменьшается

способ вакуумно-дугового нанесения покрытий, патент № 2361014

при Iразр=const,

на величину

способ вакуумно-дугового нанесения покрытий, патент № 2361014

При неизменном значении мощности Р к, выделяющейся на катоде, уменьшение его длины должно вызывать уменьшение температурного напора на рабочем участке Lк

способ вакуумно-дугового нанесения покрытий, патент № 2361014 .

Температура Тх фиксируется охлаждающей жидкостью

способ вакуумно-дугового нанесения покрытий, патент № 2361014

Для стабилизации температуры катода Т к на заданном уровне необходимо уменьшить Sк таким образом, чтобы увеличение Т1 компенсировало способ вакуумно-дугового нанесения покрытий, патент № 2361014 Тк.

Совместное решение представленных выражений позволяет получить конечное выражение, позволяющее установить связь рабочей температуры катода 1 с геометрическими размерами канавки 4 и поддерживать начальную температуру рабочей поверхности катода для каждой последующей обрабатываемой партии деталей на постоянном уровне:

способ вакуумно-дугового нанесения покрытий, патент № 2361014

Для реализации данного способа получения газопоглотительных покрытий используется вакуумно-дуговой источник плазмы коаксиальной конструкции с титановым катодом Dк =6·10-2 м, способ вакуумно-дугового нанесения покрытий, патент № 2361014 Ti=4.5·103 кг/м3, µTi=0.52·10-7 кг/Кл. Источник плазмы работает в стационарном режиме. Разрядный ток выбираем из условий стабильного горения разряда Iразр=100 А. В процессе работы температура катода как на рабочей поверхности, так и по его длине, контролировалась с помощью термопар.

Формируемый плазменный поток выводится в рабочий объем и осаждается на подложки, расположенные в зоне генерации максимального количества капельных образований. Длительность протекания технологического процесса t определяется скоростью роста наносимого покрытия способ вакуумно-дугового нанесения покрытий, патент № 2361014 рост и толщиной формируемого покрытия способ вакуумно-дугового нанесения покрытий, патент № 2361014 =способ вакуумно-дугового нанесения покрытий, патент № 2361014 ростt и составляла t=3600 с или 1 час. Для поддержания начальной температуры рабочей поверхности катода, при каждом последующем напылении на обрабатываемые изделия при использовании канавки шириной L1=5·10-3 м, диаметр ее изменяют в соответствии с расчетным соотношением: через t 1=1 час, Dk1=5.2·10-2 м; t 2=2 час, Dk2=4.7·10-2м; t 3=3 час, Dk3=4.3·10-2м; t 10=10 час, Dk10=3.0·10-2м; t 20=20 час, Dk20=2.3·10-2.

Благодаря высокой стабильности свойств покрытий данный способ испытан при формировании покрытий на сеточных электродах генераторных ламп. Сформированные покрытия обладают высокой адгезией, устойчивы к действию электрических полей и обеспечивают высокую электрическую прочность приборов.

Класс C23C14/40 с помощью разряда переменного тока, например высокочастотного разряда

способ получения ферромагнитной пленки из нанокластеров силицидов на поверхности кремниевой подложки -  патент 2458181 (10.08.2012)
способ плазменной очистки поверхности материала с покрытием из органического вещества и установка для его осуществления -  патент 2318916 (10.03.2008)
установка для нанесения защитных покрытий -  патент 2318078 (27.02.2008)
способ ремонта поверхностных дефектов деталей машин -  патент 2310551 (20.11.2007)
реактор для плазмохимического осаждения веществ из газовой фазы -  патент 2258763 (20.08.2005)
способ напыления рельефных подложек -  патент 2229182 (20.05.2004)
способ свч-плазменного осаждения диэлектрических пленок на металлические поверхности с малым радиусом кривизны -  патент 2215820 (10.11.2003)
способ упрочнения поверхностей деталей -  патент 2176682 (10.12.2001)
способ получения пленки нитрида алюминия -  патент 2113537 (20.06.1998)
Наверх