способ обработки отливок из жаропрочного никелевого сплава для монокристального литья

Классы МПК:C22F1/10 никеля, кобальта или их сплавов 
C22C19/05 с хромом
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" (RU)
Приоритеты:
подача заявки:
2007-10-15
публикация патента:

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах. Для повышения предела выносливости и прочностных характеристик изделий обрабатывают отливки из сплава, содержащего никель, хром, кобальт, вольфрам, алюминий, тантал, рений, иттрий, лантан и церий. Количественное содержание компонентов сплава, мас.%, выбирают из следующих условий: W>Та>Re и 15,1способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (W+Ta+Re)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 31,0. Отливку подвергают гомогенизации путем ступенчатого нагрева до температуры (Тпр.-15°С)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 Тгом.способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (Тпр.+10°С), где Тпр. - температура полного растворения способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в сплаве, выдержки при данной температуре и охлаждения со скоростью 50-100°С/мин. Затем осуществляют старение за два этапа. Перед термической обработкой отливки могут быть подвергнуты высокотемпературному газостатическому прессованию для удаления литейной микропористости. 4 з.п. ф-лы, 2 табл., 2 ил. способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

Формула изобретения

1. Способ обработки отливок из жаропрочного никелевого сплава для монокристального литья, содержащего никель, хром, кобальт, вольфрам, алюминий, тантал, рений, иттрий, лантан и церий при выполнении условий, мас.% W > мас.% Та > мас.% Re и 15,1способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (W+Ta+Re)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 31,0 мас.%, заключающийся в том, что отливку подвергают термической обработке, в качестве термической обработки используют гомогенизацию и старение, причем гомогенизацию приводят путем нагрева до температуры (Тпр-15°С)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 Тгомспособ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (Тпр+10°С), где Тпр - температура полного растворения способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в сплаве, выдержки при данной температуре и охлаждения со скоростью 50-100 °С/мин.

2. Способ по п.1, отличающийся тем, что перед термической обработкой осуществляют газостатическое прессование отливки.

3. Способ по п.1, отличающийся тем, что нагрев осуществляют ступенчато.

4. Способ по п.1, отличающийся тем, что старение проводят ступенчато, по меньшей мере, за два этапа.

5. Способ по п.1, отличающийся тем, что обрабатывают отливку, для которой выполняется условие (Cr+Co+W+Al+Ta)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 37,8 мас.%.

Описание изобретения к патенту

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для изготовления деталей с монокристаллической структурой, например лопаток турбин, и установок, работающих при высоких температурах.

Известен никелевый жаропрочный сплав для монокристального литья, содержащий хром, кобальт, алюминий, вольфрам, ниобий, молибден, тантал, церий, иттрий, лантан и никель при соблюдении условия 10,5способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (1/2W+1/2Ta+Nb+Мо)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 11,5 (патент РФ № 1776076, МКИ С22С 19/05, опубл. 1990 г.), - аналог.

Известен никелевый жаропрочный сплав для монокристального литья, содержащий кобальт, хром, молибден, вольфрам, алюминий, титан, гафний, рений при условии (рений + хром) не менее 4,0 мас.%, (рений + молибден + вольфрам + хром) не менее 18 мас.%, и способ его изготовления (заявка US 2002/0062886, опубл. 30.05.2002 г.) - аналог.

Известные сплавы обладают недостаточно высокой жаропрочностью, так как не оптимально сбалансированы по количественному составу компонентов.

Известен жаропрочный сплав CMSX-4, который также применяется в качестве материала для монокристальных лопаток и представляет собой безуглеродистый монокристальный ренийсодержащий сплав (патент США № 4643782, МПК С22С 19/05, 1987.02.17) - аналог.

Известный сплав имеет следующий химический состав (мас.%): кобальт - 9,3-10,0, хром - 6,4-6,8, молибден - 0,5-0,7, вольфрам - 6,2-6,6, тантал - 6,3-6,7, алюминий - 5,45-5,75, титан - 0,8-1,2, гафний - 0,02-0,12, рений - 2,8-3,2, никель - остальное до 100%.

Известный сплав, принятый за прототип, также имеет недостаточно высокую жаропрочность (предел сточасовой прочности при температуре 1000°С равен 26 кгс/мм2) и, кроме того, у него проявляется фазовая нестабильность, связанная с выделением топологически плотноупакованных (ТПУ) фаз. Изделия, полученные из сплава CMSX-4, обладают недостаточным уровнем жаропрочности при длительной эксплуатации в температурном интервале 900-1100°С.

Известен способ термической обработки, применяющийся для монокристаллических отливок никелевых жаропрочных сплавов, включающий три этапа: на первом этапе детали нагревают до температуры полного растворения способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы (температура solvus для способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в данном сплаве), выдерживают от нескольких минут до нескольких часов и охлаждают со скоростью более 100°С/мин; на втором этапе производят нагрев детали до температуры, близкой к рабочим температурам 1000-1050°С, выдерживают и охлаждают со скоростью более 100°С/мин; на третьем этапе детали нагревают до температуры 870-900°С, выдерживают и охлаждают (Каблов Е.Н. Литые лопатки газотурбинных двигателей (сплавы, технологии, покрытия). - М.: МИСИС, 2001 г., с.110-115) - аналог.

Недостатком этого способа является увеличение размера литейных микропор и суммарного количества микропор в результате термической обработки, что приводит к снижению прочностных и усталостных характеристик сплава, например, таких как длительная прочность.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является повышение предела выносливости и прочностных характеристик изделий, изготовленных из никелевых сплавов заявляемым способом, например длительной прочности способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 100способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 1000 не менее 300 МПа.

Указанный технический результат достигается тем, что в способе обработки отливок из жаропрочного никелевого сплава для монокристального литья, содержащего никель, хром, кобальт, вольфрам, алюминий, тантал, рений, иттрий, лантан и церий при выполнении условий 15,1способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (W+Ta+Re)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 31,0 мас.%, отливку подвергают термической обработке, в качестве термической обработки используют гомогенизацию и старение, причем гомогенизацию проводят путем ступенчатого нагрева до температуры (Тпр.-15°С)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 Тгом.способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (Тпр.+10°С), где Тпр. - температура полного растворения способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в сплаве, выдержки при данной температуре и охлаждения со скоростью 50-100 град./мин.

Перед термической обработкой могут осуществлять высокотемпературное газостатическое прессование монокристальных отливок для удаления литейной микропористости.

Операцию старения проводят по меньшей мере за два этапа, отличающиеся температурами нагрева Т12. На первом этапе старения отливку нагревают до более высокой температуры Т1 в двухфазной способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 -способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 ' области, выдержка при которой обеспечивает образование основного количества упрочняющей способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы и формирование регулярной способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 /способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 ' структуры.

Второй этап старения проводят при более низкой температуре T21 в двухфазной способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 -способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 ' области, что обеспечивает выделение из твердого раствора дополнительного количества упрочняющей способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в сплаве.

Обрабатывают отливку, для которой выполняется условие (Cr+Co+W+Al+Ta)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 37,8 мас.%.

Заявляемый способ основывается на следующих предпосылках.

Успехи в разработке высокожаропрочных никелевых сплавов (ЖС) последних поколений в значительной мере связаны с легированием сплавов большим количеством рения (например, 9.3 мас.% Re в сплаве ЖС 47) и элемента платиновой группы рутения (например, 6 мас.% Ru в сплаве TMS-162) (Е.Н.Каблов, Н.В.Петрушин, И.Л.Светлов. Современные литые никелевые жаропрочные сплавы. В сб. трудов Международной научно-технической конференции. М.: ВИАМ, 2006, с.43). Поскольку Re и особенно Ru - очень дорогие и дефицитные металлы, возникают вопросы о том, является ли указанное направление легирования оптимальным и полностью ли исчерпаны возможности улучшения ЖС путем легирования традиционными легирующими элементами.

Авторами проведены теоретические и экспериментальные исследования возможности оптимизации традиционной системы легирования жаропрочных никелевых сплавов, предназначенных для монокристального литья, например, лопаток газотурбинных двигателей, с помощью анализа влияния легирующих элементов на когезивную прочность никелевых сплавов.

В качестве фундаментального параметра, определяющего характеристики жаропрочности конструкционных материалов, была выбрана энергия когезии сплавов:

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

где Eatom - энергия свободного атома

Ecryst - энергия вещества в кристаллическом состоянии.

Определенная таким образом энергия когезии представляет собой работу, необходимую для того, чтобы разрушить твердое тело до атомарного состояния. В качестве E cryst использовали энергию основного состояния кристаллического вещества (сплава, металла). Для нахождения этой энергии был использован метод точных маффин-тин орбиталей (ТМТО). Данный метод в основном предназначен для расчета сплавов, поэтому энергии свободных атомов для чистых металлов рассчитывались как:

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

где Ecoh бралась из экспериментальных данных (Kittel С. Introduction to Solid State Physics, 7th ed. -Wiley, NewYork, 1996), a Ecryst рассчитывалась с помощью метода ТМТО.

В обобщенную систему легирования никелевых ЖС были включены следующие легирующие элементы:

Со, Cr, V, Ti, Al, Ru, Mo, Nb, Zr, Hf, Та, W, Re, Os, Ir.

На фиг.1 представлена зависимость рассчитанных значений энергии когезии никелевых сплавов от содержания легирующих элементов - Al, Со, Cr, Hf, Ir, Mo, Nb, Os, Pt, Re, Ru, Sc, Та, Ti, V, W, Zr. Из фиг.1 следует, что для большинства элементов зависимости Ecoh от концентрации являются линейными:

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

В качестве параметра, характеризующего эффективность влияния легирующих элементов на энергию когезии, естественно использовать способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 =способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 Ecoh/способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 c. Положительные значения параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 свидетельствуют об увеличении энергии когезии при легировании данным элементом, отрицательные говорят о противоположном эффекте. Чем больше положительное значение параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 , тем сильнее данный элемент повышает когезивную прочность никелевых сплавов.

Распределение легирующих элементов по значениям параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 в никелевых сплавах показано на фиг.2.

Данные, приведенные на фиг.1, 2, позволяют выделить базовую группу элементов, которую следует использовать в первую очередь для легирования системы Ni-Al. К ним относятся легирующие элементы, которым соответствуют наибольшие положительные значения параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 . В первую пятерку базовых элементов входят W, Та и Re.

Результаты, представленные на диаграмме, показывают, что первым элементом, способствующим наибольшему повышению энергии когезии никеля, следует считать вольфрам. Поэтому базовая система легирования никелевых ЖС в первую очередь должна содержать вольфрам, причем количество W целесообразно держать на высоком уровне, ограниченном сверху только пределом растворимости вольфрама в никелевом сплаве.

Следующим кандидатом для легирования никелевых ЖС является тантал, который целесообразно вводить в ЖС на фоне высокого содержания вольфрама, контролируя возможность выделения в никелевом сплаве фаз на основе (W, Ta).

Вслед за танталом идет рений, энергия когезии которого также почти в два раза больше таковой для чистого никеля.

Таким образом, по влиянию на энергию когезии целесообразно соблюдать следующую количественную иерархию базовых легирующих элементов: мас.% W>мас.% Та>мас.% Re.

Определимся с содержанием в сплаве базовых легирующих элементов W, Та и Re.

Оценку суммарного количества базовых элементов в ЖС указанного типа с заявляемой обработкой начнем с W. Будем исходить из того, что максимальное количество W, вводимого в известные ЖС с многокомпонентной системой легирования (без выделения из твердого раствора в виде самостоятельной фазы с ОЦК решеткой на основе W), составляет 16-20 мас.% [Кишкин С.Т., Строганов Г.Б., Логунов А.В. Литейные жаропрочные сплавы на никелевой основе. М., Машиностроение, 1987. - 116 с], минимальное содержание W в сплаве установим на уровне Wспособ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (10-12) мас.%, поскольку ниже этого значения не обеспечивается заявляемое повышение жаропрочности.

Содержание тантала может варьироваться в широких пределах, учитывая, что с увеличением тантала возрастает когезивная прочность сплава и, следовательно, жаропрочность.

Что касается содержания рения, то, с одной стороны, его энергия когезии довольно высокая, а с другой стороны - это дорогой и дефицитный металл.

Авторами установлено, что для достижения заявляемого нами технического результата при заявляемом способе обработки монокристальных отливок из никелевого жаропрочного сплава суммарное количество вольфрама, рения и тантала определяется для каждого случая отдельно, однако, как правило, минимальное их значение должно быть не меньше 15,0 мас.%, так как в противном случае не будет обеспечено планируемое повышение жаропропрочности. Максимальное значение суммарного количества вольфрама, рения и тантала для никелевых ЖС, обрабатываемых заявляемым способом, не должно превышать 31,0 мас.% и ограничено сверху пределом растворимости суммарного количества вольфрама, тантала и рения в никелевом ЖС.

За оптимальное принимается такое содержание рения, которое в сочетании с выбранным количеством тантала и вольфрама при выполнении заявляемого условия суммарного содержания этих элементов обеспечит длительную прочность при температуре 1000°С в течение 100 часов не менее 300 МПа.

Для достижения оптимальных параметров ЖС, т.е. для формирования оптимальных параметров сложной гетерофазной структуры сплава, должна быть предусмотрена возможность введения в сплав других указанных в формуле элементов, например молибдена, ниобия, титана и т.д.

Суммарное содержание трех основных компонентов никелевого ЖС является существенным, но не единственным условием, необходимым для достижения заявляемого технического результата. Другим условием является выполнение заявляемых условий обработки сплавов, например монокристальных отливок из никелевых ЖС, так как выбор условий термообработки является существенным для повышения жаропрочности сплава.

Шихтовые заготовки никелевого жаропрочного сплава (например, КС-2 или КС-3), содержащего никель, хром, кобальт, вольфрам, алюминий, тантал, рений, иттрий, лантан и церий при выполнении условий 15,0способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (W+Ta+Re)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 31,0 мас.%, отливали вакуумно-индукционным методом; из шихтовых заготовок затем получали монокристаллические отливки методом направленной кристаллизации. Для формирования оптимальной способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 -способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 ' микроструктуры монокристаллические отливки опытных сплавов подвергали термической обработке, заключавшейся в гомогенизации и двухступенчатом старении. Температуру гомогенизации выбирали из условия (Тпр.-15°С)способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 Тгом.способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 (Тпр.+10°С), где Тпр. - температура полного растворения способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы в сплаве. В случае если температура гомогенизации меньше (Тпр.-15°С), то в условиях недогрева происходит сильное огрубление не растворившейся способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 '-фазы. Эффект огрубления не устраняется при последующем старении и приводит к снижению уровня жаропрочности. Если температура гомогенизации выше (Тпр.+10°С), то возрастает вероятность неконтролируемых процессов локального оплавления, которые отрицательно влияют на жаропрочность.

Время выдержки и параметры старения отливки зависят от ее размера, характера микроструктуры и выбираются на основании металлографического изучения микроструктуры контрольных образцов.

Охлаждение со скоростью от 50 до 100 град/мин обусловлено тем, что при такой регламентации скорости охлаждения, с одной стороны, удается зафиксировать при комнатной температуре микроструктуру сплава, сформировавшуюся при термической обработке (для этого необходимо быстрое охлаждение - закалка), а с другой стороны - минимизировать негативные эффекты быстрого охлаждения (например, образование микротрещин).

Для удаления литейной пористости монокристаллических отливок их могут подвергать высокотемпературной газостатической обработке (ГИП) по специально разработанным режимам, обеспечивающим уплотнение материала отливки без локальной рекристаллизации в объеме образцов (А.В.Логунов и др. Высокотемпературное газостатическое уплотнение монокристаллов жаропрочных никелевых сплавов. Технология легких сплавов, № 1-4, 2005 г., с.71-77), с последующей термообработкой при заявленных условиях.

Примеры конкретного выполнения.

Пример 1.

Литые монокристаллические (ось роста [100]) заготовки из сплава КС-2 (12W, 8Та, 2Re, 5,6Al, 2,5Cr, 2Со, ост. Ni (мас.%) (суммарное содержание W+Ta+Re=22 мас.%) для удаления литейной пористости подвергали высокотемпературному газостатическому прессованию по режиму: ступенчатый нагрев до температуры 1250°С, давление Р=150 МПа, выдержка 2,5 часа, охлаждение в газостате.

После этого заготовки подвергали термической обработке по режиму:

- гомогенизация, которую проводили путем ступенчатого нагрева до температуры 1365°С, выдержки в течение 3 часов с последующим охлаждением со скоростью 60 °С/мин;

- старение при температуре 1055°С в течение 5,5 часов, охлаждение на воздухе;

- старение при температуре 875°С в течение 9 часов, охлаждение на воздухе.

В таблице 1 приведены значения ключевых параметров для сплава КС-2, химический состав которого близок к базовой системе легирования (Ni-Al)-W, Та, Re.

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

Из таблицы 1 следует, что предложенный сплав КС-2 имеет лучшие расчетные характеристики жаропрочности по сравнению со сплавом-аналогом. Небольшое отрицательное значение параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 в сплаве КС-2 можно изменить на аналогичную положительную величину путем легирования сплава КС-2 небольшим количеством дополнительных элементов в соответствии с формулой настоящего изобретения.

Пример 2.

Литые монокристаллические (ось роста [100]) заготовки из сплава КС-3, номинальный химический состав которого 10W, 8Та, 6Re, 5,5Al, 1,5Cr, 2Со, ост. Ni (мас.%), суммарное количество (W+Ta+Re)=24 мас.%, близок к оптимальной базовой системе легирования (Ni-Al)-W, Та, Re.

Заготовки подвергали термической обработке по режиму:

- гомогенизация, которую проводили путем ступенчатого нагрева до температуры 1360°С, выдержки в течение 3 часов с последующим охлаждением со скоростью 70 °С/мин;

- старение при температуре 1045°С в течение 6 часов, охлаждение на воздухе;

- старение при температуре 865°С в течение 11 часов, охлаждение на воздухе.

В таблице 2 приведены значения ключевых параметров для сплава КС-3, включая экспериментальные значения Тспособ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 , solvus и жаропрочности способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 100способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 1000.

способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011

Из таблицы 2 следует, что предложенный сплав КС-3 имеет лучшие характеристики жаропрочности по сравнению со сплавом-аналогом. Небольшое отрицательное значение параметра способ обработки отливок из жаропрочного никелевого сплава для   монокристального литья, патент № 2361011 в сплаве КС-3 можно изменить на аналогичную положительную величину путем легирования сплава КС-3 небольшим количеством дополнительных элементов в соответствии с формулой настоящего изобретения.

Класс C22F1/10 никеля, кобальта или их сплавов 

способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-ti с эффектом памяти формы и сверхэластичностью, ориентированных вдоль [001] направления при деформации растяжением -  патент 2524888 (10.08.2014)
способ термической обработки заготовок дисков газотурбинных двигателей из жаропрочных сплавов на основе никеля -  патент 2506340 (10.02.2014)
сверхпрочный сплав на основе никеля и детали, изготовленные из этого суперсплава -  патент 2499068 (20.11.2013)
способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава co35ni35al30 -  патент 2495947 (20.10.2013)
способ комплексной обработки высокопрочных аморфно-нанокристаллических сплавов -  патент 2492249 (10.09.2013)
способ термической обработки отливок из безуглеродистых жаропрочных никелевых сплавов для монокристаллического литья -  патент 2485204 (20.06.2013)
способ изготовления композитного материала из сплавов на основе никелида титана -  патент 2465016 (27.10.2012)
способ получения листовых изделий из никелевых жаропрочных сплавов -  патент 2460824 (10.09.2012)
способ восстановительной термической обработки изделий из жаропрочных никелевых сплавов -  патент 2459885 (27.08.2012)
способ получения изделий из сложнолегированных жаропрочных никелевых сплавов -  патент 2457924 (10.08.2012)

Класс C22C19/05 с хромом

сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением -  патент 2527543 (10.09.2014)
жаропрочный сплав на основе никеля -  патент 2525952 (20.08.2014)
жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок -  патент 2525883 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок -  патент 2524515 (27.07.2014)
металлическое покрытие со связующим веществом с высокой температурой перехода гамма/гамма' и деталь -  патент 2523185 (20.07.2014)
металлическое связующее покрытие с высокой гамма/гамма' температурой перехода и компонент -  патент 2521925 (10.07.2014)
сплав, защитный слой и деталь -  патент 2521924 (10.07.2014)
сплав на основе интерметаллида ni3al и изделие, выполненное из него -  патент 2521740 (10.07.2014)
жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью -  патент 2520934 (27.06.2014)
Наверх