способ фотообеззараживания воды

Классы МПК:C02F1/30 облучением
A23L2/50 облучением или электрообработкой без нагрева
B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Федеральное Государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") (RU)
Приоритеты:
подача заявки:
2008-04-15
публикация патента:

Изобретение относится к области фотообеззараживания воды с использованием катионных сенсибилизаторов и может быть применено для получения питьевой воды. Способ включает использование соли профлавина с органической кислотой в качестве сенсибилизатора при концентрации 0,25-2,0 мг/л при световой дозе 200-3000 Дж/л в спектральном интервале 400-480 нм. В качестве источников излучения используют голубые люминесцентные лампы, голубые светодиоды, солнечную инсоляцию. Изобретение обеспечивает создание экономичного способа очистки воды от бактериального загрязнения при снижении энергозатрат. 3 з.п. ф-лы.

Формула изобретения

1. Способ фотообеззараживания воды с использованием сенсибилизатора катионного типа и излучения видимого диапазона в присутствии кислорода, отличающийся тем, что в качестве сенсибилизатора используют соль профлавина - профлавин ацетат или профлавин формиат при их концентрации 0,25-2,0 мг/л при световой дозе 200-3000 Дж/л в спектральном интервале 400-480 нм.

2. Способ по п.1, отличающийся тем, что в качестве источников излучения видимого диапазона используют голубые люминесцентные лампы.

3. Способ по п.1, отличающийся тем, что в качестве источников излучения видимого диапазона используют голубые светодиоды.

4. Способ по п.1, отличающийся тем, что для облучения используют солнечную инсоляцию.

Описание изобретения к патенту

Настоящее изобретение относится к области фотообеззараживания воды с использованием катионных сенсибилизаторов и может быть применено для получения питьевой воды.

Наиболее известным способом обеззараживания воды является хлорирование [В.П.Подковырков, Е.М.Привен. Водоснабжение и санитарная техника. 2004, № 8, ч.1]. Однако хлорирование приводит к образованию токсичных хлорорганических веществ и не обеспечивает надежного обеззараживания устойчивых к хлору вирусов.

Известен способ обеззараживания воды озоном [патент РФ № 2109690, кл. C02F 1/32, 1998]. Недостатком способа является его дороговизна, сложность и высокая энергозатратность технологии получения озона, а также высокая токсичность и опасность озона.

Известен способ обработки бактериально загрязненной воды ультрафиолетовым светом [Ю.И.Скурлатов, Е.В.Штамм. Химия и рынок. 2001. Т.16. № 3. С.32-33]. Однако этот метод является энергоемким, требует больших капитальных затрат. Ультрафиолетовое излучение интенсивно поглощается водой и содержащимися в ней растворенными веществами вследствие чего эффективное обеззараживание может быть достигнуто только в тонком слое воды.

Известен способ фотообеззараживания воды с использованием катионных сенсибилизаторов - пиридиниометилзамещенных фталоцианинов цинка и алюминия и излучения видимого диапазона. Положительный заряд обеспечивает взаимодействие этих сенсибилизаторов с отрицательно заряженными внешними мембранами микроорганизмов, проникновение в них и эффективную фотодинамическую инактивацию. Для увеличения эффективности использования энергии широкополосных источников света они могут использоваться в составе композиций с красителями акридинового, родаминового или фенотиазинового ряда [патент РФ № 2235688, кл. C02F 1/32, 2004] (прототип). Недостатком данного способа является высокая энергозатратность вследствие отсутствия экономичных искусственных источников света на область поглощения пиридиниометилзамещенных фталоцианинов цинка и алюминия и высокая эффективная световая доза обеззараживания - около 2000 Дж/л.

Задача изобретения - создание экономичного способа фотообеззараживания воды с использованием катионного сенсибилизатора.

Задача решается тем, что обеззараживание воды сенсибилизатором и излучением видимого диапазона в присутствии кислорода производят с использованием в качестве сенсибилизатора соли профлавина с органической кислотой структурной формулы (1) в концентрации 0.25-2.0 мг/л при световой дозе 200-3000 Дж/л в спектральном интервале 400-480 нм.

способ фотообеззараживания воды, патент № 2358909

Задача решается также тем, что в качестве источников излучения видимого диапазона используют голубые люминесцентные лампы.

Задача решается также тем, что в качестве источников излучения видимого диапазона используют голубые светодиоды.

Задача решается также тем, что для облучения используют солнечную инсоляцию.

Известно, что профлавин обладает антибактериальным действием, в частности сульфат профлавина широко использовался для дезинфекции ран во время первой и второй мировой войны [A.C.R.Dean. The Antibacterial Action of Acridines. In "Acridines" Ed. R.M.Acheson. 2-nd Edition. 1973. New-York a.o., Interscience - Wiley. XII - The Chemistry of Heterocyclic Compounds. Vol.9. P.789-814]. В настоящем изобретении обнаружено фотообеззараживающее действие профлавина при использовании его для дезинфекции воды. Соли профлавина с неорганическими кислотами (сульфат, хлорид) обладают недостаточной растворимостью в воде. Профлавин, содержащий в качестве противоиона анион органической кислоты, обладает хорошей растворимостью в воде, что является преимуществом при его использовании в водных средах. Однако на основании известных из литературы сведений нельзя было предсказать фотообеззараживающее действие соли профлавина с органической кислотой. Применение органической соли профлавина в концентрации менее 0.25 мг/л не обеспечивает эффективного обеззараживания, а в концентрации более 2.0 мг/л нецелесообразно из-за необоснованно высокого расхода сенсибилизатора без существенного повышения эффективности. Снижение световой дозы ниже 200 Дж/л приводит к резкому ухудшению эффективности фотообеззараживания, тогда как ее увеличение свыше 3000 Дж/л нецелесообразно вследствие значительного снижения концентрации органической соли профлавина из-за фотодеструкции и уменьшения эффективности процесса.

Предлагаемое изобретение иллюстрируется нижеприведенными примерами.

Пример 1 (сравнительный по прототипу)

Готовили раствор октакис(пиридиниометил)фталоцианина цинка с концентрацией 3 мг/л в воде с содержанием общих колиформных бактерий ОКБ=900 в 100 мл. До начала облучения раствор инкубировали в течение 1 часа, затем облучали красными светодиодами марки HPWL-BD01, спектр излучения которых совпадает со спектром поглощения октакис(пиридиниометил)фталоцианина цинка. Раствор облучали до световой дозы 450 Дж/л, перемешивая во время облучения барботированием воздуха. После окончания облучения в пробах воды определяли общие колиформные бактерии (ОКБ), для чего микроорганизмы из 100 мл воды высеивались на мембранные фильтры, затем инкубировались в термостате при 37°С в течение суток. Подсчитывалось число колоний (КОЕ). Эффективность фотообеззараживания определяли по формуле: Эффективность (%) = 100 * (ОКБ до обработки - ОКБ после обработки)/(ОКБ до обработки).

Эффективность обеззараживания составила 80%.

Пример 2

Обработку воды производили с использованием сенсибилизатора профлавин ацетат в концентрации 2 мг/л на установке, отличающейся от описанной в примере 1 тем, что для облучения использовали голубые светодиоды марки WU-14-751BC. Спектр излучения светодиодов WU-14-751 ВС (400-480 нм) соответствует поглощению профлавина. При суммарной световой дозе 450 Дж/л эффективность обеззараживания общих колиформных бактерий составила 100% (начальный уровень ОКБ=1300 КОЕ/100 мл).

Пример 3

Отличается от описанного в примере 2 тем, что концентрация профлавина ацетата составляла 1.5 мг/л, а также тем, что облучение производили до световой дозы 200 Дж/л. Эффективность обеззараживания составила 99.6% при начальном уровне ОКБ=600 КОЕ/100 мл.

Пример 4

Готовили раствор профлавина ацетата с концентрацией 0.3 мг/л в воде с ОКБ=25 КОЕ/100 мл. До начала облучения раствор инкубировали в течение 0.5 часа, затем помещали в емкость, снабженную погружными голубыми люминесцентными лампами Blue OSRAM 18W/67, спектр излучения которых согласуется со спектром поглощения профлавина, и облучали до суммарной световой дозы 1300 Дж/л. Раствор во время облучения перемешивали и аэрировали барботированием воздуха. После окончания облучения воду анализировали на содержание ОКБ аналогично описанному в примере 1. Эффективность обеззараживания составила 100%.

Пример 5

Отличается от описанного в примере 4 тем, что профлавин ацетат использовали в концентрации 1.5 мг/л при световой дозе 3000 Дж/л. Эффективность обеззараживания составила 100% при исходном уровне ОКБ=120 КОЕ/100 мл.

Пример 6

В стеклянную емкость объемом 4 л помещали бактериально загрязненную воду, содержащую 1 мг/л профлавина ацетата, и подвергали солнечной инсоляции в течение 1 часа. Слой раствора составлял 7 см. На спектральный диапазон 400-480 нм приходится около 9.6% энергии солнечного света, что за 1 час инсоляции дает световую дозу, поглощенную профлавином, 1500-2000 Дж/л (точную дозу указать невозможно ввиду изменения освещенности во время облучения). Эффективность обеззараживания составила 100% при начальном уровне ОКБ=130 КОЕ/100 мл.

Пример 7

В бактериально загрязненную воду с ОКБ=1000 КОЕ/100 мл вводили профлавин ацетат в концентрации 0.25 мг/л, инкубировали 1 час, затем облучали светом галогенной лампы OSRAM мощностью 500 Вт через водяной фильтр, отсекающий тепловое излучение ИК-диапазона. Световая доза, поглощенная профлавин ацетатом, была оценена в 700 Дж/л. Эффективность обеззараживания равнялась 98%.

Пример 8

Отличается от описанного в примере 7 тем, что в качестве сенсибилизатора использовали профлавин формиат в концентрации 0.5 мг/л. Начальный уровень ОКБ составлял 11 КОЕ/100 мл, эффективность обеззараживания равнялась 100%.

Пример 9 (сравнительный)

Отличается от примера 8 тем, что облучение не производили. Эффективность обеззараживания составила 30%.

Примеры 2-8 демонстрируют 100%-ную или близкую к ней эффективность применения для фотодинамического обеззараживания общих колиформных бактерий соли профлавина с органической кислотой в концентрациях 0.25-2.0 мг/л при дозе поглощенного света 200-3000 Дж/л. Пример 2 показывает, что при световой дозе 450 Дж/л в случае профлавина ацетата было достигнуто 100%-ное обеззараживание общих колиформных бактерий, тогда как в случае октакис(пиридиниометил)фталоцианина цинка при такой же световой дозе эффективность обеззараживания составила только 80% (пример 1). Таким образом, эффективная световая доза в случае фотообеззараживания с использованием профлавина ниже, чем для прототипа. Она оценена в 200 Дж/л (для прототипа - на порядок больше). Из сопоставления примеров 8 и 9 следует, что облучение повышает бактерицидный эффект соли профлавина с органической кислотой.

Использование предлагаемого способа обеззараживания воды совместно с применением известных приемов очистки воды позволит получать воду, удовлетворяющую требованиям, предъявляемым к питьевой воде.

Класс C02F1/30 облучением

способ обеззараживания воды и оценки его эффективности -  патент 2520857 (27.06.2014)
способ получения фотокатализатора для разложения органических загрязнителей -  патент 2478430 (10.04.2013)
композитный фотокатализатор для очистки воды и воздуха -  патент 2478413 (10.04.2013)
способ очистки сточных вод -  патент 2473469 (27.01.2013)
гетерогенные сенсибилизаторы и способ очистки сточных вод от ароматических аминов и фенолов -  патент 2471715 (10.01.2013)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
рч системы и способы для обработки соленой воды -  патент 2458012 (10.08.2012)
гетерогенный сенсибилизатор и способ фотообеззараживания воды -  патент 2447027 (10.04.2012)
способ очистки сточных вод -  патент 2433964 (20.11.2011)
способ очистки и обеззараживания сточных вод -  патент 2431607 (20.10.2011)

Класс A23L2/50 облучением или электрообработкой без нагрева

Класс B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого

способ и устройство для использования смесительных элементов в системах уф-обеззараживания сточных вод/оборотной воды -  патент 2515315 (10.05.2014)
способ и устройство для плазмохимической очистки газов от органических загрязнений -  патент 2508933 (10.03.2014)
способ продления ресурса графитового ядерного канального реактора -  патент 2501105 (10.12.2013)
устройство для получения битума -  патент 2499813 (27.11.2013)
плазмохимический способ получения модифицированного ультрадисперсного порошка -  патент 2492027 (10.09.2013)
способ очистки углеводородного газа от сероводорода -  патент 2477649 (20.03.2013)
установка для электрогидравлического обогащения и концентрирования минерального, в том числе золотосодержащего сырья с высоким содержанием глинистых компонентов -  патент 2477173 (10.03.2013)
способ очистки сточных вод -  патент 2473469 (27.01.2013)
установка для электровзрывной активации водных пульп и суспензий -  патент 2470875 (27.12.2012)
система распыления топлива при содействии электрического поля и способы использования -  патент 2469205 (10.12.2012)
Наверх