способ получения углеродного нанокристаллического материала, чувствительного к рн среды

Классы МПК:B82B3/00 Изготовление или обработка наноструктур
C01B31/02 получение углерода
C30B30/00 Производство монокристаллов или гомогенного поликристаллического материала с определенной структурой, отличающееся воздействием электрического или магнитного полей, волновой энергии или других специфических физических условий
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технический университет) (RU)
Приоритеты:
подача заявки:
2007-12-28
публикация патента:

Изобретение относится к нанотехнологии. Способ получения углеродного нанокристаллического материала включает приготовление раствора полиакрилонитрила (ПАН) (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1×105) в диметилформамиде (ДМФА) с С ПАН=1÷5 мас.%, выдерживание ПАН до растворения в ДМФА в течение 72 часов при 25°С, нанесение на стеклоуглеродную основу слоя раствора ПАН/ДМФА, сушку полимерного слоя в сушильном шкафу при 90°С в течение 0,5÷1 час, нагрев пленки полимера со скоростью 2÷20°С/мин под действием ИК-излучения и выдержку пленки более 1 секунды при 800÷900°С, Р=10 -3 мм рт.ст. Изобретение позволяет получать углеродный нанокристаллический материал, чувствительный к рН среды. 1 табл., 2 ил.

способ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 способ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572

Формула изобретения

Способ получения углеродного нанокристаллического материала, чувствительного к рН среды, включающий приготовление раствора полиакрилонитрила (ПАН) в диметилформамиде (ДМФА), выдерживание ПАН до растворения в ДМФА, нанесение на основу слоя раствора ПАН/ДМФА, сушку полимерного слоя и нагревание полученного твердого вещества, отличающийся тем, что осуществляют приготовление раствора ПАН (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1·105) в ДМФА с СПАН=1÷5 мас.%; выдерживание ПАН до растворения в ДМФА в течение 72 ч при 25°С; нанесение на стеклоуглеродную основу слоя раствора ПАН/ДМФА; сушку полимерного слоя в сушильном шкафу при 90°С в течение 0,5-1 ч; нагрев пленки полимера со скоростью 2÷20°С/мин под действием ИК-излучения и выдержку пленки более 1 с при 800÷900°С, Р=10-3 мм рт.ст. с образованием углеродного нанокристаллического материала, чувствительного к рН среды.

Описание изобретения к патенту

Изобретение относится к нанотехнологии изготовления углеродного нанокристаллического материала (УНМ), чувствительного к рН среды.

Органические полупроводники интенсивно исследуют и применяют в качестве сенсоров, используя эффект допирования на изменение электропроводимости [MacDiarmid F.G. Synthetic metals: a novel role for organic polymers. / Nobel Lectures. Chemistry. 1996-2000. World Scientific Publishing Co., Singapore]. УНМ на основе термообработанного полиакрилонитрила обладает наиболее стабильными среди органических полупроводников электрофизическими свойствами (R<10-4 К-1 в диапазоне от -100 до 600°С) и получается с помощью экономически эффективного способа термообработки. Образование при термообработке графитоподобной фазы, искривленных углеродных плоскостей приводит к структурам, имеющим сферическую (сферолиты), кольцеобразную формы и фибриллы, представляющие тубуленоподобные структуры, которые имеют размер 2÷5 нм [Кожитов Л.В., Косушкин В.Г., Крапухин В.В., Пархоменко Ю.Н. "Технология материалов микро- и наноэлектроники". М.: МИСиС. 2007 г., 544 с.].

Техническим результатом является получение углеродного нанокристаллического материала, чувствительного к рН среды.

Способ получения УНМ содержит стадии приготовления раствора полиакрилонитрила (ПАН) (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1×105) в диметилформамиде (ДМФА) с СПАН=1÷5 мас.%; выдерживание ПАН до растворения в ДМФА в течение 72 часа при 25°С; нанесение на стеклоуглеродную основу слоя раствора ПАН/ДМФА; сушки полученной структуры в сушильном шкафу при 90°С в течение 0,5÷1 часа; нагрев пленки полимера со скоростью 2÷20°С/мин под действием ИК-излучения и выдержки пленки более 1 секунды при 800÷900°С, Р=10 -3 мм рт.ст. с образованием углеродного нанокристаллического материала, чувствительного к рН среды.

Зависимость электродного потенциала УНМ от рН среды исследовали при 25°С с помощью измерительной системы, содержащей хлорсеребряный электрод сравнения, электрод, изготовленный по выше указанному способу. Измерения проводили в ячейке при перемешивании раствора, в качестве которого использовали стандартные буферные растворы.

Для измерения размера кристаллитов графитоподобной фазы использован рентгеновский дифрактометр ДРОН-1,5 (CuKспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 -излучение) с модернизированной коллимацией. Средний кристаллический размер (Lc) наночастиц графитоподобной фазы (ГФ) рассчитан из рентгеновских дифрактограмм с помощью уравнения Дебай-Шеррера:

способ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 ,

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; способ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1,54056 Å - длина волны рентгеновского CuKспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 - излучения.

Пример 1. Делаем навеску ПАН (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1×105) с mПАН=1 г; приготавливаем 50 мл ДМФА для получения раствора с СПАН=2 мас.%. Берем коническую колбу (V=100 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленный ДМФА. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения ПАН в ДМФА получаем раствор ПАН/ДМФА. Методом окунания наносим на стеклоуглеродную основу в виде цилиндра пленку полимерного раствора. Высушиваем полимерный слой на стеклоуглеродной основе, сушку проводим в сушильном шкафу при 90°С в течение 1 часа. Помещаем пленку ПАН на стеклоуглеродной основе в установку термообработки с помощью ИК-излучения. Нагрев пленки полимера производим со скоростью 2°С/мин до 900°С при Р=10 -3 мм рт.ст. в реакторе. Выдерживаем образец при 900°С в течение 1 минуты. С помощью рентгенофазового анализа УНМ установлен размер кристаллитов графитоподобной фазы (ГФ), составляющий 2,7 нм. Электрохимический потенциал пленки УНМ на стеклоуглероде измеряли с помощью измерительной системы, содержащей хлорсеребряный электрод сравнения и электрод, изготовленный по вышеуказанному способу. Измерения проводили в ячейке при перемешивании раствора, в качестве которого использовали стандартные буферные растворы. Зависимость электрохимического потенциала УНМ от рН в кислой области составила 58 мВ/рН, а в щелочной среде зависимость снижается до 20 мВ/рН (фиг.1). Для графита и стеклоуглерода зависимость от рН не наблюдается из-за их индифферентных свойств к электролиту (фиг.1). Электродный потенциал не изменяется в течение времени выдержки электрода в электролите (фиг.2).

Пример 2. Делаем навеску ПАН (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1×105) с mПАН=0,5 г; приготавливаем 50 мл ДМФА для получения раствора с СПАН =1 мас.%. Берем коническую колбу (V=100 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленный ДМФА. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения ПАН в ДМФА получаем раствор ПАН/ДМФА. Методом окунания наносим на стеклоуглеродную основу в виде цилиндра пленку полимерного раствора. Высушиваем полимерный слой на стеклоуглеродной основе, сушку проводим в сушильном шкафу при 90°С в течение 0,5 часа. Помещаем пленку ПАН на стеклоуглеродной основе в установку термообработки с помощью ИК-излучения. Нагрев пленки полимера производим со скоростью 10°С/мин до 800°С при Р=10-3 мм рт.ст. в реакторе. Выдерживаем образец при 800°С в течение 2 секунд. С помощью рентгенофазового анализа УНМ установлен размер кристаллитов ГФ, составляющий 1,9 нм. Электрохимический потенциал пленки УНМ на стеклоуглероде измеряли с помощью измерительной системы, содержащей хлорсеребряный электрод сравнения и электрод, изготовленный по вышеуказанному способу. Измерения проводили в ячейке при перемешивании раствора, в качестве которого использовали стандартные буферные растворы. Зависимость электрохимического потенциала УНМ от рН в кислой области составила 49 мВ/рН, а в щелочной среде зависимость снижается до 19 мВ/рН. Электродный потенциал не изменяется в течение времени выдержки электрода в электролите.

Пример 3. Делаем навеску ПАН (Мспособ получения углеродного нанокристаллического материала,   чувствительного к рн среды, патент № 2353572 =1×105) с mПАН=2,5 г; приготавливаем 50 мл ДМФА для получения раствора с СПАН =5 мас.%. Берем коническую колбу (V=100 мл) с пробкой, засыпаем в нее навеску ПАН и заливаем приготовленный ДМФА. После перемешивания содержимого в колбе с помощью стеклянной палочки в течение 5 мин закрываем колбу пробкой. После выдержки смеси в течение 72 часов при 25°С до полного растворения ПАН в ДМФА получаем раствор ПАН/ДМФА. Методом окунания наносим на стеклоуглеродную основу в виде цилиндра пленку полимерного раствора. Высушиваем полимерный слой на стеклоуглеродной основе, сушку проводим в сушильном шкафу при 90°С в течение 45 минут. Помещаем пленку ПАН на стеклоуглеродной основе в установку термообработки с помощью ИК-излучения. Нагрев пленки полимера производим со скоростью 20°С/мин до 850°С при Р=10-3 мм рт.ст. в реакторе. Выдерживаем образец при 850°С в течение 10 минут. С помощью рентгенофазового анализа УНМ установлен размер кристаллитов ГФ, составляющий 2,2 нм. Электрохимический потенциал пленки УНМ на стеклоуглероде измеряли с помощью измерительной системы, содержащей хлорсеребряный электрод сравнения и электрод, изготовленный по вышеуказанному способу. Измерения проводили в ячейке при перемешивании раствора, в качестве которого использовали стандартные буферные растворы. Зависимость электрохимического потенциала УНМ от рН в кислой области составила 51 мВ/рН, а в щелочной среде зависимость снижается до 18 мВ/рН. Электродный потенциал не изменяется в течение времени выдержки электрода в электролите.

От условий приготовления (температура обработки (Тобр. ); исходной концентрации раствора ПАН в ДМФА (СПАН ); времени сушки (tсуш) при 90°С; времени термической обработки (tобр); скорости нагрева (V)) зависят свойства (зависимость электрохимического потенциала от рН раствора (К рН) и размер нанокристаллитов ГФ (RГФ)) полученного УНМ, которые показаны в таблице.

Таблица

Зависимость свойств УНМ от условий получения
СПАН , мас.%tсуш , минTобр. , °Сt обр, минV, 0/мин RГФ, нм КpH (pH<7), мВ/рН КpH (pH>7), мВ/рН
12 60900 12 2,758 20
2 1 30800 0,0310 1,949 19
3 5 45850 1020 2,251 18
4 3 40820 55 2,355 19
5 4 50870 315 2,456 20
6 5 40800 120 1,847 18
7 2 30840 0,13 2,250 19
8 3 60810 0,220 1,746 18
9 1 35830 23 2,354 18

Класс B82B3/00 Изготовление или обработка наноструктур

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс C01B31/02 получение углерода

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
полимерный нанокомпозит с управляемой анизотропией углеродных нанотрубок и способ его получения -  патент 2520435 (27.06.2014)
способ получения углерод-металлического материала каталитическим пиролизом этанола -  патент 2516548 (20.05.2014)
способ получения углеродных наноматериалов с нанесённым диоксидом кремния -  патент 2516409 (20.05.2014)
тонкодисперсная органическая суспензия углеродных металлсодержащих наноструктур и способ ее изготовления -  патент 2515858 (20.05.2014)
способ получения сажи, содержащей фуллерены и нанотрубки, и устройство для его осуществления -  патент 2511384 (10.04.2014)
способ заполнения внутренней полости нанотрубок химическим веществом -  патент 2511218 (10.04.2014)

Класс C30B30/00 Производство монокристаллов или гомогенного поликристаллического материала с определенной структурой, отличающееся воздействием электрического или магнитного полей, волновой энергии или других специфических физических условий

микрофлюидное устройство для кристаллизации белков в условиях невесомости -  патент 2522613 (20.07.2014)
способ получения наноалмазов при пиролизе метана в электрическом поле -  патент 2521581 (27.06.2014)
способ получения алмазоподобных покрытий комбинированным лазерным воздействием -  патент 2516632 (20.05.2014)
способ прямого получения поликристаллического кремния из природного кварца и из его особо чистых концентратов -  патент 2516512 (20.05.2014)
способ получения столбчатых монокристаллов кремния из песка и устройство для его осуществления -  патент 2488650 (27.07.2013)
способ получения микро- и наноструктурированных массивов кристаллов оксида цинка -  патент 2484188 (10.06.2013)
способ получения наноструктурированных массивов кристаллов оксида цинка -  патент 2478740 (10.04.2013)
способ динамического синтеза ультрадисперсного кристаллического ковалентного нитрида углерода c3n4 и устройство для его осуществления -  патент 2475449 (20.02.2013)
способ получения наноалмазов -  патент 2465376 (27.10.2012)
способ получения наноструктурированных алмазных покрытий на изделиях из вольфрама -  патент 2456387 (20.07.2012)
Наверх