состав для создания водонепроницаемости низкотемпературных грунтов и пород

Классы МПК:E02D3/12 упрочнение грунта путем введения в грунт затвердевающих или порозаполняющих веществ
Автор(ы):, , ,
Патентообладатель(и):Институт химии нефти Сибирского отделения Российской Академии наук (RU)
Приоритеты:
подача заявки:
2007-01-30
публикация патента:

Изобретение относится к области гидротехнического строительства и может быть использовано для восстановления водонепроницаемости гидротехнического сооружения из низкотемпературных грунтов и пород, особенно в районах вечной мерзлоты, а также при создании и ремонте противофильтрационных завес в грунтовых плотинах, построенных в районах распространения многолетнемерзлых пород. Состав для создания водонепроницаемости низкотемпературных грунтов и пород содержит поливиниловый спирт, воду, борную кислоту и дополнительно наполнитель - древесные опилки и/или базальтовое волокно при следующем соотношении компонентов, мас.%: поливиниловый спирт - 3,0-10,0, борная кислота - 0,2-1,0, древесные опилки - 7,0-10,0, базальтовое волокно - 0,1-0,5, вода - остальное. Технический результат - повышение механических свойств состава, снижение деформации и разрушения грунтов и пород, предупреждение их растрескивания при сезонном замораживании и оттаивании. 1 табл.

Формула изобретения

Состав для создания водонепроницаемости низкотемпературных грунтов и пород, содержащий поливиниловый спирт, воду и борную кислоту, отличающийся тем, что он дополнительно содержит наполнитель - древесные опилки и/или базальтовое волокно при следующих соотношениях компонентов, мас.%:

поливиниловый спирт3,0-10,0
борная кислота0,2-1,0
древесные опилки 7,0-10,0
базальтовое волокно 0,1-0,5
вода остальное.

Описание изобретения к патенту

Изобретение относится к области гидротехнического строительства и может быть использовано для восстановления водонепроницаемости гидротехнического сооружения (понижения водопроницаемости) из низкотемпературных грунтов и пород, особенно в районах вечной мерзлоты, а также при создании и ремонте противофильтрационных завес (экранов) в грунтовых плотинах, построенных в районах распространения многолетнемерзлых пород.

Известен состав для закрепления грунта на основе акриламида (а.с. №395543, БИ №35, 1973 г.). Этот состав не пригоден для укрепления грунта в районах вечной мерзлоты.

Известен инъекционный раствор (а.с. №649788, БИ №8, 1979 г.) на основе цемента и хладостойкой добавки, однако при закачке в зоны с большим поглощением, характерным для грунтовых плотин в районах вечной мерзлоты, он быстро размывается и не успевает схватиться.

Наиболее близким по технической сущности является способ и состав для изготовления водонепроницаемого экрана в низкотемпературных грунтовых материалах элементов гидротехнического сооружения (Пат. №2276703). При реализации этого способа используется состав, включающий поливиниловый спирт - структурообразователь, воду и борную кислоту. Состав способен при температуре 0-10°С образовывать гель, который создает противофильтрационный экран, а затем в процессе замораживание - размораживание он превращается в криогель, при этом его противофильтрационные и прочностные характеристики улучшаются. Однако в зонах с большим поглощением и высокой скоростью потока воды противофильтрационные и прочностные характеристики состава недостаточны.

Задачей настоящего изобретения является разработка состава с хорошими механическими свойствами для создания водонепроницаемости низкотемпературных грунтов и пород, создания противофильтрационного экрана в гидротехнических сооружениях в районах распространения многолетнемерзлых пород, подвергающихся процессам периодического сезонного замораживания и оттаивания в зонах с аномально высокой скоростью фильтрации.

Технический результат в предлагаемом изобретении достигается тем, что состав на основе поливинилового спирта с добавлением борной кислоты дополнительно содержит наполнитель. В качестве наполнителя используют древесные опилки и/или базальтовое волокно. После закачки через нагнетательные скважины в тело и основание плотины или другого гидротехнического сооружения состав образует гель, а затем в процессе замораживания-размораживания превращается в композитный криогель с улучшенными механическими свойствами: увеличивается вязкость, упругость. Это приводит к созданию противофильтрационного экрана в зонах с аномально высокой скоростью фильтрации воды.

Предлагаемый состав для образования криогелевого противофильтрационного экрана содержит поливиниловый спирт, борную кислоту, воду и наполнитель - древесные опилки и/или базальтовое волокно при следующих соотношениях компонентов, мас.%:

поливиниловый спирт3.0-10.0,
борная кислота0.2-1.0,
древесные опилки 7.0-10.0,
базальтовое волокно 0.1-0.5,
вода остальное

Раствор закачивают через нагнетательные скважины в тело и основание плотины или другого гидротехнического сооружения при давлении, меньшем давления гидроразрыва грунта. В зонах с большим поглощением и высокой скоростью потока воды за счет сцепления состава с породой и повышенной вязкости и упругости состава фильтрационное сопротивление потоку воды увеличивается, скорость потока замедляется. Через определенное время при температуре 0-10°С образуется гель, создающий противофильтрационный экран. Скорость потока становится равной нулю, то есть поток останавливается. В дальнейшем при сезонном замораживании-размораживании прочностные характеристики противофильтрационного экрана улучшаются.

Состав готовят следующим образом. В воду с температурой 70-90°С при постоянном перемешивании помещают необходимое количество борной кислоты, затем поливинилового спирта ПВС и перемешивают до получения однородного раствора. Получается раствор с вязкостью 6-146 мПа·с. Затем вводят необходимое количество наполнителя, в качестве наполнителя используют древесные опилки или базальтовое волокно, а также совместно опилки с базальтовым волокном. Приготовленные композиции помещают в ячейки, термостатируют в течение 7 суток при температурах 2 и минус 30°С. После термостатирования при 2°С образуется гель, при минус 30°С - криогель. Композиции, выдержанные при минус 30°С, перед измерением размораживают при комнатной температуре. Композиции, выдержанные при 2°С, перед измерением также выдерживают определенное время при комнатной температуре. Затем проводят измерения вязкости и упругости полученных гелей и криогелей.

Измерение вязкости проводят методом вибрационной вискозиметрии с использованием вибрационного вискозиметра «Реокинетика» с камертонным датчиком. В качестве калибровочной жидкости используют дистиллированную воду.

Определение модуля упругости гелей проводят на основании диаграмм «напряжение - деформация», полученных в квазистатическом режиме сжатия цилиндрических образцов. Использовалась оригинальная аппаратура на базе микрометра и электронных весов. Модуль упругости рассчитывают как угол наклона начального линейного участка зависимости напряжения сжатия от величины деформации, для которого соблюдается закон Гука. Результаты измерений приведены в таблице.

Приведем примеры конкретного выполнения.

Пример 1 (по прототипу). В 940,0 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, затем 50,0 г поливинилового спирта и перемешивают до получения однородного раствора. Получается раствор, содержащий 5,0 мас.% поливинилового спирта и 1,0 мас.% борной кислоты. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример 2 (по прототипу). В воду с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, затем 70,0 г поливинилового спирта и перемешивают до получения однородного раствора. Получается раствор, содержащий 7,0 мас.% поливинилового спирта и 1,0 мас.% борной кислоты. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример 3. В 935,0 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, 50,0 г поливинилового спирта, добавляют 5,0 г базальтового волокна и перемешивают до получения однородного раствора. Получается раствор, содержащий 5,0 мас.% поливинилового спирта, 1,0 мас.% борной кислоты и 0,5 мас.% г базальтового волокна. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Примеры 4, 5 (Аналогично примеру 3 при различных соотношениях компонентов). Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример 6. В 940,0 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, 50,0 г поливинилового спирта и перемешивают до получения однородного раствора, затем в полученный раствор добавляют 100,0 г древесных опилок и перемешиванием равномерно распределяют наполнитель в растворе. Получается раствор, содержащий 4,5 мас.% поливинилового спирта, 0,9 мас.% борной кислоты и 9,0 мас.% древесных опилок. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример 7. (Аналогично примеру 6). Получают раствор, содержащий 6,5 мас.% поливинилового спирта, 0,9 мас.% борной кислоты и 7,4 мас.% древесных опилок. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример 8. В 915,0 г воды с температурой 70-90°С при постоянном перемешивании помещают 10,0 г борной кислоты, 70,0 г поливинилового спирта, добавляют 5,0 г базальтового волокна и перемешивают до получения однородного раствора, затем в полученный раствор добавляют 80,0 г древесных опилок и перемешиванием равномерно распределяют наполнитель в растворе. Получается раствор, содержащий 6,5 мас.% поливинилового спирта, 0,9 мас.% борной кислоты, 0,5 мас.% базальтового волокна и 7,4 мас.% древесных опилок. Результаты измерения вязкости и модуля упругости раствора, геля, полученного после термостатирования при 2°С, и криогеля - при минус 30°С приведены в таблице.

Пример опытно-промышленных испытаний состава.

На плотине Иреляхского гидроузла в зонах с большим поглощением и высокой скоростью потока воды произведена поинтервальная закачка криогелеобразующих составов с целью тампонажа фильтрующего основания плотины. Был закачан криогелеобразующий состав с концентрацией ПВС - 5 мас.%, борной кислоты - 1 мас.%. Кроме того, в качестве наполнителей использовали древесные опилки или базальтовое волокно, а также совместно опилки с базальтовым волокном.

Приготовление состава, содержащего 5% ПВС и 1% борной кислоты, осуществлялось следующим образом. В теплоизолированную емкость вместимостью 0.75 м3 с лопастной мешалкой помещали 700-710 л воды, предварительно нагретой до 90°С, при постоянном перемешивании засыпали 7.5 кг борной кислоты, затем 40 кг ПВС и перемешивали 3-5 часов до получения однородного раствора. Полученный раствор в количестве 750 л по шлангам буровым трехплунжерным насосом НБ4-160/63 перекачивали в емкость вместимостью 1.5 м 3 с лопастной мешалкой, где раствор охлаждался до 20-30°С. Раствор готовили параллельно в двух емкостях по 0.75 м 3 с мешалками. При закачке древесные опилки использовали в виде 10%-ной суспензии в растворе состава, содержащего 5% ПВС и 1% борной кислоты. Насыпной вес опилок 120 кг/м 3. Для приготовления раствора криогелеобразующего состава с древесными опилками в емкость (ведро) заливали 8 л раствора криогелеобразующего состава, добавляли 600-800 г опилок и перемешивали. Полученный раствор криогелеобразующего состава с древесными опилками заливали в скважину самотеком. После окончания загрузки в скважину раствора криогелеобразующего состава с опилками продолжали закачку раствора криогелеобразующего состава.

В опытных скважинах Г-1, Г-2 и Г-3 вода появилась с 24-26 м, водопоглощение при гидроопробовании составляло максимально 120 л/мин при 0-1 атм, до образования криогелевого экрана между скважинами существовала хорошая гидродинамическая связь. В этих скважинах закачку раствора производили поинтервально, с интервалами 3-7 м. Разбуривание нижележащих зон после закачки состава происходило легко, при этом из промороженных зон плотины раствор выбуривался в виде кусков и крупинок, а из растепленных зон - в виде геля. В тех зонах, куда был закачан состав, как правило, водопритока не было. Во всех опытных скважинах криогелевая завеса была создана до глубины 45-46 м.

За счет закачки состава в скважины РЦ-6, Г-1, Г-2, Г-3 и РЦ-7 на опытном участке в основании плотины с глубины от 16 до 45 м образовался криогелевый экран длиной 15 м, площадью приблизительно 430 м 2 и толщиной около 3 м, создавший противофильтрационную завесу. Об этом свидетельствует тот факт, что при последующем разбуривании нижележащих зон скважин в тех зонах, куда был закачан раствор, водопритока не наблюдалось. При бурении контрольной скважины КГ-1 между скважинами Г-1 и Г-2 в разбуренных интервалах 21-37 м водопритока не наблюдалось, при этом закачивалось «до отказа» очень мало цементного раствора, например, 37 кг для зоны 21-27 м. Кроме того, старая температурная скважина 57, находящаяся в нижнем бьефе напротив опытного участка закачки криогеля, с 30 августа перестала фонтанировать.

Согласно Акту опробования контрольной скважины КГ-1, пробуренной между скважинами Г-1 и Г-2, в интервале 21-36 м при давлении 0.5-1.5 атм удельное водопоглощение находилось в пределах 0.018-0.022 л/(мин·м·м), в среднем 0.017 л/(мин·м·м); в интервале 36-40 м при давлении 0.7-1.5 атм удельное водопоглощение находилось в пределах 0.14-0.44 л/(мин·м·м), в среднем 0.28 л/(мин·м·м). В интервале 21-40 м при давлении 0.5-1.5 атм среднее удельное водопоглощение равно 0.15 л/(мин·м·м). Инъекционные работы по криогелевой завесе следует признать достаточными, так как среднее удельное водопоглощение в контрольной скважине до глубины 40 м составляет 0.15 л/(мин·м·м), что не превышает 1 л/(мин·м·м).

В процессе цементирования контрольной скважины КГ-1 при закачивании цементного раствора «до отказа» поглощение цемента было незначительным: в интервале 21-36 м-0.8 кг/м, в интервале 36-40 м - 16.5 кг/м. Эти значения существенно меньше наблюдавшихся при цементации скважины РЦ-6, разбуренной и зацементированной за 3 месяца до проведения опытных работ (поглощение цемента составляло: в интервале 21-24 м - 142 кг/м, в интервале 24-27 м - 530 кг/м).

Результаты проведения опытно-промышленных работ показали, что для создания противофильтрационной завесы достаточное количество раствора составляет в среднем 0.4 м 3 на 1 м пробуренного интервала.

В 2003 г. в 5 скважин опытного участка в центральной части плотины кроме криогелеобразующего состава без наполнителя было закачано криогелеобразующего состава с древесными опилками 0.6 м3 (53 кг опилок).

В 2004 г. в 10 скважин правого примыкания плотины кроме криогелеобразующего состава без наполнителя было закачано криогелеобразующего состава с древесными опилками 10 м3 (914 кг опилок). По сравнению с закачкой в скважины центральной части плотины количество опилок на одну скважину правого примыкания увеличилось примерно в 10 раз вследствие более сильного поглощения.

Всего в ходе инъекционных работ в 2005 г. закачано 1433.5 м 3 раствора криогелеобразующего состава, использовано ПВС - 96 808 кг, борной кислоты - 15 289,95 кг, опилок - 7460,4 кг, базальтового волокна - 840,8 кг. Расход раствора криогелеобразующего состава в среднем составил 0.89 м3 на 1 м пробуренного интервала в инъекционной скважине.

Опытно-промышленные работы показали, что криогелеобразующие растворы можно готовить непосредственно на плотине и закачивать в скважины с использованием стандартной техники для цементации.

Таким образом, добавление к криогелеобразующему раствору наполнителей (древесных опилок и/или базальтового волокна) позволяет получить гели и криогели с хорошими механическими свойствами для создания противофильтрационного экрана в гидротехнических сооружениях в зонах с аномально высокой скоростью фильтрации. Вязкость составов с наполнителем - базальтовым волокном после процесса криогелеобразования увеличивается в 2,8-5,0 раз, модуль упругости - в 1,4-2,4 раза. Упругость составов с добавлением древесных опилок увеличивается в 1,3-5,2 раза. Наибольшую упругость имеет криогелеобразующий раствор, наполненный совместно базальтовым волокном и опилками. В процессе замораживания в зонах с аномально высокой скоростью фильтрации данные криогели позволяют исключить возникновение в породе и грунте высоких напряжений, которые приводят к их деформации и разрушению, позволяют предотвратить растрескивание пор породы и грунта в процессе сезонного замораживания и оттаивания.

Таблица
Изменение вязкоупругих свойств составов после криогелеобразования
   Концен трация, мас.% РастворГель Криогель
ВеществаВязкость, мПа·с Модуль упругости, кПаВязкость, мПа·с Модуль упругости, кПаВязкость, мПа·сМодуль упругости, кПа
1ПВС 5,0        
  Борная кислота1,0 45,94,8 88,825,7249,3 223,1
  Вода94,0         
2ПВС 7,0        
 Борная кислота 1,098,2 6,6325,034,0 378,0226,8
 Вода 92,0        
3ПВС5,0         
  Борная кислота1,0        
 Базальтовое  123,4 7,9263,745,6 586,8289,4
 волокно 0,5        
  Вода93,5         
4ПВС 7,0        
 Борная кислота 1,0        
 Базальтовое  506,08,5 774,046,8 1077,0308,8
 волокно0,5         
  Вода91,5         
5ПВС 10,0        
 Борная кислота 1,0        
 Базальтовое  260,417,1 546,588,3 1044,8324,9
 волокно0,1         
  Вода88,9         
6ПВС 4,5        
 Борная кислота 0,9        
 Древесные  -5,83 -133,3- 300,4
  опилки9,0        
 Вода 85,6        
7ПВС 6,5        
  Борная кислота0,9         
  Древесные  -6,9- 136,1-302,4
 опилки 7,4        
  Вода85,2         
8ПВС 6,5        
 Борная кислота 0,9        
 Базальтовое          
 волокно0,5 -12,6 -254,7- 319,3
  Древесные         
 опилки 7,4        
 Вода 84,7        

Класс E02D3/12 упрочнение грунта путем введения в грунт затвердевающих или порозаполняющих веществ

устройство для смешивания почвенных материалов -  патент 2521211 (27.06.2014)
композиция для устройства оснований дорожных одежд и других сооружений -  патент 2520118 (20.06.2014)
способ определения количества цемента в грунтоцементном материале конструкции -  патент 2513567 (20.04.2014)
способ укрепления естественных грунтов и минеральных материалов для строительства дорог -  патент 2509188 (10.03.2014)
способ интенсивного укрепления грунта под действующим строением -  патент 2507342 (20.02.2014)
способ закрепления грунта или фундамента -  патент 2503768 (10.01.2014)
способ строительства зданий, сооружений на неравномерно сжимаемых грунтах -  патент 2494194 (27.09.2013)
грунтовая смесь -  патент 2493325 (20.09.2013)
способ укрепления оснований фундаментов в сейсмически опасных зонах -  патент 2487976 (20.07.2013)
оборудование для струйной цементации -  патент 2485249 (20.06.2013)
Наверх