способ нанесения гальванических покрытий оловом

Классы МПК:C25D3/32 с использованием органических компонентов
Автор(ы):, ,
Патентообладатель(и):Пензенский Государственный Университет (ПГУ) (RU)
Приоритеты:
подача заявки:
2007-04-02
публикация патента:

Изобретение относится к области гальваностегии и может быть использовано для нанесения покрытий оловом на металлические изделия. Способ включает приготовление электролита и осаждение олова, при этом электролит готовят растворением в дистиллированной воде 13-17 г/л пятиводного хлорида олова (IV) в пересчете на металл и 140-160 г/л молочной кислоты (80%-ной) с выдержкой электролита 24 часа при температуре 17-25°С для образования лактатного комплекса олова, а осаждение проводят при катодной плотности тока 0,5-1,0 А/дм2, температуре электролита 20-28°С с использованием графитового анода. Технический результат - получение полублестящих, хорошо сцепленных с основой покрытий, повышение выхода по току. 4 табл.

Формула изобретения

Способ нанесения гальванических покрытий оловом, включающий приготовление электролита и осаждение олова, отличающийся тем, что электролит готовят растворением в дистиллированной воде 13-17 г/л пятиводного хлорида олова (IV) в пересчете на металл и 140-160 г/л молочной кислоты (80%-ной) с выдержкой электролита 24 ч при температуре 17-25°С для образования лактатного комплекса олова, а осаждение проводят при катодной плотности тока 0,5-1,0 А/дм2, температуре электролита 20-28°С с использованием графитового анода.

Описание изобретения к патенту

Изобретение относится к гальваническому способу получения покрытий оловом.

Электрохимическое оловянирование проводится как в кислых, так и в щелочных растворах. В качестве кислых электролитов применяют растворы солей олова на основе серной, соляной, борфтористоводородной, фенолсульфоновой кислот, в качестве щелочных - станнатные и пирофосфатные.

В кислых электролитах, используемых в настоящее время в промышленности, олово находится в двухвалентном состоянии.

В качестве примера можно привести электролиты следующих составов (г/л) [3]:

1. Сульфат олова (II) - 51; серная кислота - 100; клей столярный - 2; фенол технический - 30. Процесс проводят при температуре 20-30°С и катодной плотности тока 1-3 А/дм 2 [3].

2. Сульфат олова (II) - 25-50; серная кислота - 80-100; о-крезол технический - 8-10; клей столярный - 1-2; 1,4-бутиндиол (35%-ный раствор) - 25-50 мл/л. Процесс проводят при температуре 18-25°С и катодной плотности тока 2-7 А/дм 2 при интенсивном перемешивании [3].

В отсутствие ПАВ из этих электролитов олово выделяется без заметной поляризации. В связи с этим осадки, полученные из кислых электролитов без специальных органических добавок, получаются крупнокристаллическими и уже при небольшой толщине становятся рыхлыми. Плотные, мелкокристаллические покрытия оловом можно получить из кислых электролитов, только вводя в них специальные органические вещества, повышающие катодную поляризацию. Причем осадки наилучшего качества получаются при введении в электролит одновременно нескольких органических добавок [1, 2, 3]. Так, например, в электролите 1 обязательным условием является применение именно технического фенола, в котором содержатся в качестве примесей различные органические вещества, которые способствуют получению оловянных покрытий хорошего качества. Содержание в растворах лужения большого количества различных органических веществ не только усложняет процесс утилизации отработанного электролита и промывных вод, но и не позволяет поддерживать концентрации большинства органических добавок на постоянном уровне, так как для большинства этих добавок имеются только методики качественного анализа.

Еще одним значительным недостатком кислых электролитов, содержащих соли олова со степенью окисления +2, является их нестабильность в работе, так как олово (II) окисляется, что значительно ухудшает качество покрытия. В связи с этим в данные электролиты часто в процессе нанесения покрытий необходимо добавлять пероксид водорода или пергидроль и следить за состоянием оловянных анодов (они должны иметь золотисто-желтый цвет).

Из известных электролитов наиболее близким по составу и технологическим характеристикам является электролит, содержащий: 20-51 г/л сульфата олова (II), 100 г/л серной кислоты, 2 г/л столярного клея, 30 г/л фенола. Диапазон рабочих температур - 20-30°С. Рабочая плотность тока 1,0-3,0 А/дм2 [3].

Данный электролит помимо ионов олова содержит в своем составе токсичные органические вещества, что затрудняет утилизацию данного электролита и очистку промывных вод.

Техническим результатом предлагаемого способа является получение полублестящих, хорошо сцепленных с основой покрытий оловом с высоким выходом по току. Электролит должен быть стабильным в работе, простым в приготовлении и корректировке, а также не содержать токсичных органических добавок. Рабочая температура электролита не должна быть выше 30°С.

Это достигается тем, что электролит готовят растворением в дистиллированной воде 13-17 г/л пятиводного хлорида олова (IV) в пересчете на металл и 140-160 г/л молочной кислоты (80%-ной) с выдержкой электролита 24 часа при температуре 17-25°С для образования лактатного комплекса олова, а осаждение проводят при катодной плотности тока 0,5-1,0 А/дм2, температуре электролита 20-28°С с использованием графитового анода.

В кислом электролите осуществляют замену олова (II) на олово (IV), что предотвращает окисление его на аноде и в объеме электролита и замену токсичных комлексообразователей на менее токсичный - молочную кислоту. Молочная кислота широко распространена в природе, она является интермедиатом процессе обмена в биологических тканях, легко биоразлагаема и поэтому экологически безопасна.

Приготовление электролита ведут следующим образом. В дистиллированной воде растворяют, согласно составу электролита, пятиводный хлорид олова (IV). Затем доливают молочную кислоту, доводят до рабочего объема дистиллированной водой и перемешивают. Электролит необходимо выдержать 24 часа при температуре 17-25°С для образования лактатного комплекса олова.

Пример конкретного выполнения способа.

Для электрохимического осаждения качественных полублестящих, хорошо сцепленных с основой покрытий олова, приготовили электролит следующего состава: пятиводный хлорид олова (IV) (в пересчете на металл) - 15 г/л, молочная кислота (80%-ная) - 150 г/л.

Осаждение проводили при катодной плотности тока 1,0 А/дм2 и температуре 20°С без перемешивания, т.к. перемешивание данного раствора резко ухудшает качество осадка и снижает катодный выход по току. В качестве материала анода был использован графит. Катодный выход по току составил 95-98%, а рассеивающая способность предлагаемого электролита по металлу - 43%, по току - 90%.

В таблицах 1-4 представлены экспериментальные данные зависимостей катодного выхода по току от параметров способа осаждения.

Преимущество промышленного использования заявляемого электролита:

1. Олово находится в высшей степени окисления и, следовательно, не окисляется. Таким образом, получается стабильный в работе электролит.

2. Комплексы олова с молочной кислотой могут быть легко разрушены на стадии очистки сточных вод путем смещения значения рН выше 6.

3. Электролит сравнительно прост по составу, не содержит токсичных органических добавок, обладает хорошей рассеивающей способностью, позволяет получать покрытия хорошего качества.

Таблица 1.
Зависимость катодного выхода по току олова от катодной плотности тока.
ik, А/Дм20,3 0,50,7 11,21,5 23
ВТ, %95 9690 878278 7357
Таблица 2.
Зависимость катодного выхода по току олова от концентрации ионов олова при катодной плотности тока 0,5 А/Дм2 .
[Sn +4], г/л5 1015 20
ВТ, % 7995 9186
Таблица 3.
Зависимость катодного выхода по току олова от концентрации ионов олова при катодной плотности тока 1 А/Дм2.
[Sn+4], г/л5 1015 20
ВТ, % 68,587 9793
Таблица 4
Зависимость катодного выхода по току олова от концентрации молочной кислоты.
[Hiact], мл/л 50100 150200 250
ВТ, % 93,795,5 98,697,3 84

Источники информации

1. Ямпольский A.M., Ильин В.А. Краткий справочник гальванотехника. - 3-е изд., перераб. и доп. - Л.: Машиностроение, Ленингр. отд-ние, 1981. с 124.

2. Ларин И.О., Максименко С.А., Тютина К.М., Кудрявцев В.Н. Влияние некоторых органических веществ на процесс окисления олова в кислых электролитах для осаждения олова и его сплавов. Прогрессивная технология и вопросы экологии в гальванотехнике и производстве печатных плат: Материалы конференции. Пенза, 1996. с.6.

3. Гальванические покрытия в машиностроении. Справочник. В 2-х томах / Под ред. М.А.Шлугера. - М.: Машиностроение, 1985. - T.1. 1985. 240 с., с ил.

Класс C25D3/32 с использованием органических компонентов

композиция электролита для лужения и способ электролитического лужения поверхностей -  патент 2357014 (27.05.2009)
способ электроосаждения цинка -  патент 2211887 (10.09.2003)
способ электроосаждения олова -  патент 2208664 (20.07.2003)
способ электроосаждения олова -  патент 2205902 (10.06.2003)
станнитный электролит-коллоид с добавкой поверхностно- активного вещества октил-аминобензойной кислоты -  патент 2189404 (20.09.2002)
дробь для охотничьего патрона и способ ее обработки -  патент 2141011 (10.11.1999)
способ приготовления блескообразующей добавки -  патент 2123070 (10.12.1998)
способ восстановления химического состава электролита лужения в процессе эксплуатации -  патент 2114218 (27.06.1998)
кислый электролит для электроосаждения белстящих покрытий сплавом олово-свинец -  патент 2113555 (20.06.1998)
способ замены типа электролита лужения жести -  патент 2103419 (27.01.1998)
Наверх