способ производства горячекатаного листового проката

Классы МПК:C21D8/02 при изготовлении плит или лент
B21B1/26 горячей 
Автор(ы):, , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Северсталь" (ОАО "Северсталь") (RU)
Приоритеты:
подача заявки:
2006-11-16
публикация патента:

Изобретение относится к области металлургии, конкретнее к горячей прокатке толстолистовой стали на реверсивных станах, которая используется для изготовления сварных металлоконструкций. Для повышения качества горячекатаного листового проката и выхода годного способ включает нагрев слябов, последующую их многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, при этом чистовую прокатку начинают при температуре 970-1050°С и завершают при температуре конца прокатки от 940 до 990°С с относительным обжатием в последнем проходе 7-15%. Сляб получают из стали, содержащей, мас.%: С=0,18-0,23; Si=0,15-0,40; Mn=1,0-1,35; V=0,02-0,04; Al=0,02-0,05; Crспособ производства горячекатаного листового проката, патент № 2341564 0,3; Niспособ производства горячекатаного листового проката, патент № 2341564 0,3; Cuспособ производства горячекатаного листового проката, патент № 2341564 0,3; Sспособ производства горячекатаного листового проката, патент № 2341564 0,020; Pспособ производства горячекатаного листового проката, патент № 2341564 0,020; Nспособ производства горячекатаного листового проката, патент № 2341564 0,012; Fe - остальное. Температура конца прокатки при толщине листа 6,0-16,0 мм равна 940°С, при толщине листа 16,1-25,0 мм - 950°С, при толщине листа 25,1-40,0 мм - 980°С, при толщине листа сверх 40,0 мм равна 990°С. 4 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ производства горячекатаного листа из низколегированной стали, включающий получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, отличающийся тем, что сляб получают из стали, имеющей следующий химический состав, мас.%:

углерод0,18-0,23
кремний0,15-0,40
марганец1,0-1,35
ванадий0,02-0,04
алюминий0,02-0,05
хромне более 0,3
никельне более 0,3
медьне более 0,3
серане более 0,020
фосфорне более 0,020
азотне более 0,012
железоостальное,

при этом чистовую прокатку начинают при температуре 970-1050°С и завершают при температуре конца прокатки от 940 до 990°С с относительным обжатием в последнем проходе от 7 до 15%.

2. Способ по п.1, отличающийся тем, что при получении листа толщиной 6,0-16,0 мм температура конца прокатки равна 940°С.

3. Способ по п.1, отличающийся тем, что при получении листа толщиной 16,1-25,0 мм температура конца прокатки равна 950°С

4. Способ по п.1, отличающийся тем, что при получении листа толщиной 25,1-40,0 мм температура конца прокатки равна 980°С.

5. Способ по п.1, отличающийся тем, что при получении листа толщиной более 40,0 мм температура конца прокатки равна 990°С.

Описание изобретения к патенту

Изобретение относится к области металлургии, конкретнее к горячей прокатке толстолистовой стали на реверсивных станах, которая используется для изготовления сварных металлоконструкций.

Горячекатаный листовой прокат толщиной 6,35-51,0 мм, используемый для изготовления сварных металлоконструкций, должен отвечать следующему комплексу механических свойств (табл.1), а также обладать их стабильностью:

Таблица 1

Механические свойства горячекатаных листов (ASTM А/572)
способ производства горячекатаного листового проката, патент № 2341564 в, МПаспособ производства горячекатаного листового проката, патент № 2341564 т, МПаспособ производства горячекатаного листового проката, патент № 2341564 , %KV-30, Дж Свариваемость
не менее 450345-355 не менее 19не менее 12 удовлетв.

Известен способ производства горячекатаной низколегированной толстолистовой стали, содержащей углерод, кремний, марганец, титан, медь, никель, хром, молибден, ванадий, ниобий и железо. Способ включает нагрев слябов, их черновую и чистовую реверсивную горячую прокатку, которую завершают при температуре 800-900°С. Затем прокатанные листы подвергают охлаждению [1].

Недостаток известного способа состоит в том, что листы различной толщины охлаждаются с разной скоростью. Это приводит к нестабильности механических свойств листов из данной низколегированной стали, снижению качества и выхода годных листов.

Известен также способ производства толстолистовой конструкционной стали с однородной ферритной структурой. В соответствии с этим способом отливают слябы следующего химического состава, мас.%:

Углеродне более 0,23
Марганецне более 1,35
Фосфорне более 0,04
Сера не более 0,05
Кремний не более 0,50
Ванадий не более 0,10
Алюминий 0,02-0,06
Никель не более 0,50
Хром не более 0,70
Медь не более 0,40
Железо остальное.

Слябы нагревают до температуры 1120-1180°С, подвергают черновой прокатке с суммарным обжатием 40-60% и чистовой прокатке с суммарным обжатием 40-60%. Чистовую прокатку начинают при температуре не выше 980°С и завершают при температуре конца прокатки ниже 870°С [2].

Недостаток известного способа состоит в том, что прокатанные листы, в зависимости от толщины и конкретного содержания легирующих элементов стали, приобретают различные механические свойства. Это снижает их качество и выход годного.

Наиболее близким аналогом к предлагаемому изобретению является способ производства горячекатаного листового проката из низколегированной стали марки 14ХГ2САФД, включающий нагрев слябов, последующую их многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, при этом чистовую прокатку завершают при температуре конца прокатки не выше 950°С с относительным обжатием в последнем проходе не менее 15% [3] - прототип.

Недостаток известного способа состоит в том, что горячекатаные листы имеют низкие вязкопластические свойства. Помимо этого, в процессе чистовой прокатки и при последующем охлаждении на воздухе листы приобретают нестабильные механические свойства, зависящие как от толщины листов, так и от конкретного химического состава каждой плавки. Это снижает качество горячекатаных листов и выход годного.

Техническая задача, решаемая изобретением, состоит в повышении качества горячекатаных листов и выхода годного.

Указанная техническая задача решается тем, что в известном способе производства горячекатаного листа из низколегированной стали, включающем получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, согласно изобретению чистовую прокатку начинают при температуре 970-1050°С и завершают при температуре конца прокатки от 940 до 990°С с относительным обжатием в последнем проходе от 7 до 15%, причем сляб получают из стали, содержащей следующий химический состав, мас.%:

Углерод0,18-0,23
Кремний0,15-0,40
Марганец1,0-1,35
Ванадий0,02-0,04
Алюминий0,02-0,05
Хромне более 0,3
Никельне более 0,3
Медьне более 0,3
Серане более 0,020
Фосфорне более 0,020
Азотне более 0,012
Железоостальное.

Кроме того, при получении листа толщиной 6,0-16,0 мм температура прокатки равна 940°С, при получении листа толщиной 16,1-25,0 мм температура конца прокатки равна 950°С, при получении листа толщиной 25,1-40,0 мм температура конца прокатки равна 980°С, а при получении листа толщиной более 40,0 мм температура конца прокатки равна 990°С.

Сущность предлагаемого изобретения состоит в следующем. Обеспечение заданных механических свойств горячекатаных толстых листов достигается одновременно как оптимизацией химического состава стали, так и режимов их последующей деформационно-термической обработки. При относительном обжатии в последнем проходе 7-15% и температуре конца прокатки, зависящей от толщины листа, в стали предложенного состава формируется аустенитная структура такого типа, что после распада переохлажденного аустенита на феррит и перлит конечная микроструктура и механические свойства стали практически не зависят от толщины листа, которая определяет скорость их охлаждения, и конкретного химического состава плавки. Благодаря этому листы в диапазоне толщин от 6,0 до 51 мм имеют заданные и равномерные механические свойства.

Экспериментально установлено, что при температуре начала чистовой прокатки ниже 970°С формируется мелкая анизотропная микроструктура аустенита и нестабильные микроструктура и свойства прокатанных листов. Это снижает качество листов и выход годного. Увеличение температуры начала чистовой прокатки более 1050°С приводит к разнобалльности микроструктуры стали, потере прочностных свойств готовых листов.

При температуре конца прокатки выше 990°С в стали предложенного состава в процессе охлаждения наблюдается неравномерный рост аустенитных зерен, что приводит к неравномерности микроструктуры в готовых листах, снижению прочности и стабильности механических свойств. Снижение температуры конца прокатки менее 940°С ухудшает пластические и вязкостные свойства листов.

При относительном обжатии от 7 до 15% в последнем проходе имеет место механическая проработка валками только поверхностных слоев толстых листов. И так как поверхность листов после прокатки охлаждается наиболее интенсивно, то результатом механической проработки поверхности является выравнивание механических свойств листов различной толщины и различного химического состава стали в заявленных пределах.

Увеличение обжатия более 15% приводит к росту прочности и неравномерности механических свойства листов толщиной 6,0-25,0 мм. Снижение обжатия в последнем проходе менее 7% не обеспечивает выравнивания механических свойств листов в диапазонах толщин 6,0-25,0 мм, что снижает качество листов и выход годного.

Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,18% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,23% ухудшает пластичность и вязкость стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,15% прочность стали недостаточна. Увеличение содержания кремния более 0,40% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность.

Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 1, 0% снижается прочность стали и вязкость при отрицательных температурах, приводит к увеличению отбраковки. Повышение концентрации марганца сверх 1,35% ухудшает пластичность стали. Ванадий образуют с углеродом карбиды VC, а с азотом - нитриды VN. Мелкие нитриды и карбонитриды ванадия располагаются по границам зерен и субзерен, тормозят движение дислокации и, тем самым, упрочняют сталь. При содержании ванадия менее 0,02% его влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение концентрации ванадия более 0,04% вызывает дисперсионное твердение проката и приводит к выделению на границах зерен интерметаллических соединений. Это ухудшает свойства и снижает выход годных горячекатаных полос.

Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,02% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,05% приводит к графитизации стали, потере прочности и хладостойкости.

Хром, никель и медь способствуют повышению прочностных свойств и стойкости против коррозии, но при содержании каждого из этих элементов более 0,30% имеет место снижение работы удара при отрицательных температурах, что недопустимо.

Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,020% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали данного состава. В то же время более глубокая десульфурация удорожает сталь, делает ее производство нерентабельным.

Фосфор в количестве не более 0,020% целиком растворяется в способ производства горячекатаного листового проката, патент № 2341564 -железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,020% вызывает охрупчивание стали и снижение работы удара при отрицательных температурах.

Азот является нитридообразующим элементом, упрочняющим сталь. Однако повышение концентрации азота сверх 0,012% приводит к снижению вязкостных свойств (работы удара) при отрицательных температурах, что недопустимо.

Примеры реализации способа

В кислородном конвертере производят выплавку низколегированных сталей различного состава (табл.1).

Выплавленные стали разливают на МНЛЗ в слябы сечением 250×1350 мм, которые загружают в газовую методическую печь и нагревают до температуры Т а - 1180°С. Нагретые слябы прокатывают в черновой клети кварто толстолистового реверсивного стана 2800 за 7 проходов (с разбивкой ширины) в раскаты толщиной 60 мм с одновременным охлаждением до температуры начала чистовой прокатки T нп=1010°С.

Затем раскаты толщиной 60 мм задают в чистовую клеть кварто и прокатывают их до конечной толщины Нл=6,0-51,0 мм. Листы всех толщин обжимают в последнем проходе на величину способ производства горячекатаного листового проката, патент № 2341564 к=7-15% при регламентированной температуре конца прокатки Ткп от 940 до 990°С, зависящей от толщины листа Нл.

Прокатанные листы охлаждают на воздухе, после чего от них отбирают пробы для испытания механических свойств, по наличию внутренних дефектов с помощью ультразвукового контроля и свариваемости, по результатам которых определяют выход годного Q.

В табл.2 приведены химические составы низколегированных сталей, а в табл.3 - варианты способа производства горячекатаного листового проката из сталей различных составов и показатели их эффективности.

Из табл.2 и 3 следует, что при реализации предложенного способа (варианты №2-5, составы сталей №2-4) обеспечивается получение заданных и стабильных механических свойств горячекатаных листов толщиной от 6,0 до 51,0 мм. Выход годного при этом максимален и составляет Q=99,7-99,9%. При запредельных значениях заявленных параметров (варианты №1 и 6, составы №1 и 5) уровень и стабильность механических свойств снижаются, к тому же механические свойства зависят от толщины листов. Это снижает качество листов и выход годного. Также более низкое качество и выход годных горячекатаных листов достигается при реализации способа-прототипа (вариант №7, состав стали №6).

Технико-экономические преимущества предложенного способа состоят в том, что одновременная оптимизация химического состава стали и деформационно-термических режимов прокатки толстых листов на реверсивном стане обеспечивает получение заданного уровня и высокой стабильности механических свойств листов различной толщины. Изменение предельного значения температуры конца прокатки Ткп в зависимости от толщины листов Н л и регламентированное обжатие листов в последнем проходе на способ производства горячекатаного листового проката, патент № 2341564 к=7-15% компенсирует влияние на формирование микроструктуры и механических свойств различия в скоростях охлаждения листов разной толщины. Благодаря этому повышается качество листов и выход годного.

В качестве базового объекта принят способ-прототип. Использование предложенного способа обеспечит повышение рентабельности производства горячекатаного листового проката из низколегированной стали для изготовления сварных металлоконструкций на 25-30%.

Литературные источники

1. Заявка Японии №2205628, МПК C21D 8/02, С22С 38/00, 1990 г.;

2. Патент США №4662950, МПК C21D 8/02, 1987 г.;

3. RU 2191833 C1, C21D 8/02, 27.10.2002. - прототип.

Таблица 2
Химический состав низколегированных сталей
№ составаСодержание химических элементов, мас.%
С SiMnV AlCrNi CuSР NFe
1. 0,170,14 0,90,010,01 0,090,090,09 0,0060,009 0,008Остальн.
2.0,180,15 1,00,020,02 0,100,100,10 0,0110,016 0,009
3.0,20 0,271,17 0,030,0350,15 0,150,15 0,0150,0180,010 -:-
4. 0,230,351,35 0,040,05 0,300,300,30 0,0200,020 0,011-:-
5.0,240,36 1,360,050,06 0,400,40 0,400,0210,021 0,012-:-
6.0,15 0,601,200,08 0,040,40 0,300,400,010 0,0220,012 -:-
(прототип)                -:-

Таблица 3
Режимы производства листового проката и показатели их эффективности
№ варианта№ состава Тнп, °С способ производства горячекатаного листового проката, патент № 2341564 к, %Н л, ммТкп, °С способ производства горячекатаного листового проката, патент № 2341564 в, МПаспособ производства горячекатаного листового проката, патент № 2341564 т, МПаспособ производства горячекатаного листового проката, патент № 2341564 , %KV-30, Дж СвариваемостьQ, %
1.1. 96065,0-16,0 945350-450 320-34515-197-11 удовл.23,4
2.2. 97076,0-16,0 940460 3502418 удовл.99,7
3.3.1010 1016,1-25,0950 460350 2519удовл. 99,9
4.4. 103012 25,1-40,0980465 35024 18удовл.99,9
5.3. 10501540,1-51,0 990460 3552418 удовл.99,8
6.5.1060 1651,1-60,01000 380-450320-345 12-196-12неудовл. 22,4
7. 6.85019,4 6,0-40,0750370-470 290-36011-20 3-12удовл.20,8
(прототип)               

Класс C21D8/02 при изготовлении плит или лент

способ производства холоднокатаного проката для упаковочной ленты -  патент 2529325 (27.09.2014)
способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
способ горячей прокатки сляба и стан горячей прокатки -  патент 2528560 (20.09.2014)
высокопрочный холоднокатаный стальной лист с превосходным сопротивлением усталости и способ его изготовления -  патент 2527571 (10.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью и способ его производства -  патент 2524021 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
способ производства штрипсов из низколегированной стали -  патент 2519720 (20.06.2014)
способ производства горячего проката из микролегированных сталей -  патент 2519719 (20.06.2014)
способ термомеханической обработки -  патент 2519343 (10.06.2014)

Класс B21B1/26 горячей 

способ горячей прокатки сляба и стан горячей прокатки -  патент 2528560 (20.09.2014)
способ горячей прокатки стальных полос и стан горячей прокатки -  патент 2526644 (27.08.2014)
способ производства штрипсов из низколегированной стали -  патент 2519720 (20.06.2014)
способ термомеханической обработки -  патент 2519343 (10.06.2014)
способ производства горячекатаного широкополосного рулонного проката -  патент 2516212 (20.05.2014)
стан горячей прокатки и способ горячей прокатки металлической ленты или металлического листа -  патент 2505363 (27.01.2014)
способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов -  патент 2500820 (10.12.2013)
способ горячей прокатки стальных полос -  патент 2499638 (27.11.2013)
способ производства толстолистовой стали -  патент 2499059 (20.11.2013)
способ производства горячекатаного проката повышенной прочности -  патент 2495942 (20.10.2013)
Наверх