способ получения покрытия из квазикристаллического сплава системы al-cu-fe

Классы МПК:C23C4/12 характеризуемые способом распыления
C23C4/08 содержащие только металлы
C22C21/12 с медью в качестве следующего основного компонента
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) (RU)
Приоритеты:
подача заявки:
2006-12-15
публикация патента:

Изобретение относится к способам получения квазикристаллических материалов, а именно к способам получения покрытий из квазикристаллических сплавов системы Al-Cu-Fe. Способ включает послойное напыление на поверхность детали расплавленных частиц, нагрев которых осуществляют в плазменной струе, экранированной подачей пирофорного технологического газа в пятно напыления. Напыление покрытия осуществляют из порошка, исходная смесь которого взята при соотношении алюминия, меди и железа, соответствующем области существования квазикристаллической фазы сплава Al-Cu-Fe, путем нагрева его до температуры плавления в инертной атмосфере. При этом поверхность детали охлаждают теплоносителем, а температуру в пятне напыления поддерживают в интервале 650-750°С. Технический результат - получение покрытия из квазикристаллического сплава системы Al-Cu-Fe. 3 ил. способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574

способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574 способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574 способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574

Формула изобретения

Способ получения покрытия из квазикристаллического сплава системы Al-Cu-Fe, включающий послойное напыление на поверхность детали расплавленных частиц, нагрев которых осуществляют в плазменной струе, экранированной подачей технологического газа в пятно напыления, отличающийся тем, что напыление покрытия осуществляют из порошка, исходная смесь которого взята при соотношении алюминия, меди и железа, соответствующем области существования квазикристаллической фазы сплава Al-Cu-Fe, путем нагрева его до температуры плавления в инертной атмосфере, при этом поверхность детали охлаждают теплоносителем, плазменную струю экранируют подачей пирофорного технологического газа, а температуру в пятне напыления поддерживают в интервале 650-750°С.

Описание изобретения к патенту

Изобретение относится к методам получения квазикристаллических материалов, в частности квазикристаллических покрытий, используемых в качестве защитных, антифрикционных, конструкционных, термочувствительных, термоскомпенсированных, полупроводниковых, сверхпроводниковых и т.д. покрытий, и может найти применение в ядерной, аэрокосмической, автомобильной и приборостроительной отраслях промышленности.

В качестве прототипа выбран способ, реализуемый при помощи электродугового плазмотрона Саунина (RU 2276840 С2, С23С 4/00, 20.05.2006). Известный способ получения покрытий заключается в послойном напылении на поверхность детали расплавленных частиц, нагрев которых осуществляют в плазменной струе, экранированной технологическим газом.

Известным способом невозможно получить квазикристаллическое покрытие из сплава системы Al-Cu-Fe, так как не обеспечен необходимый температурный режим охлаждения расплавленных частиц.

Задачей предлагаемого изобретения является получение квазикристаллического покрытия из сплава системы Al-Cu-Fe.

Поставленная задача достигается тем, что в известном способе получения покрытия, включающем послойное напыление на поверхность детали расплавленных частиц, нагрев которых осуществляют в плазменной струе, экранированной подачей технологического газа в пятно напыления, согласно изобретению напыление покрытия осуществляют из порошка, исходная смесь которого взята при соотношении алюминия меди и железа соответствующем области существования квазикристаллической фазы сплава Al-Cu-Fe, путем нагрева его до температуры плавления в инертной атмосфере, при этом поверхность детали охлаждают теплоносителем, плазменную струю экранируют подачей пирофорного технологического газа, а температуру в пятне напыления поддерживают в интервале 650...750°С.

На фиг.1 схематично изображена установка, с помощью которой реализуется заявляемый способ.

На фиг.2 представлены дифрактограммы покрытий, напыленных заявляемым способом, при различных температурах в пятне напыления.

На фиг.3 приведен график зависимости процентного содержания квазикристаллической фазы в покрытиях от температуры в пятне напыления.

Установка содержит плазмотрон 1, создающий плазменную струю 2. Плазмотрон имеет коаксиальный зазор для создания экранирующего потока 3 и патрубок 4 для ввода порошка. Покрытие 5 наносится на деталь 6, охлаждаемую теплоносителем 7.

Способ осуществляется следующим образом.

Исходный порошок состава Al 65Cu22Fe13 транспортирующим газом аргоном подается через патрубок 4 в плазмотрон 1, нагревается в плазменной струе 2 до температуры плавления и со скоростью, близкой к скорости плазменной струи, на дистанции L переносится к поверхности детали 6, охлаждаемой теплоносителем 7. Плазменная струя экранируется подачей пирофорного технологического газа 3 в пятно напыления 8.

На процесс формирования квазикристаллической фазы оказывает влияние температура в пятне напыления. Температура в пятне напыления зависит от энергетических параметров работы плазмотрона; дистанции напыления; расходов порошка, технологического газа, теплоносителя; скорости взаимного перемещения плазмотрона и детали.

Пример 1

Плазмотрон Саунина устанавливаем на дистанции L=120 мм от детали, имеющей замкнутую криволинейную поверхность (коническая поверхность, переходящая в сферическую). Внутренняя поверхность детали охлаждается водой с расходом 0,05 л/с на 1 см2. Материал детали - свинец. Порошок состава Al65Cu22 Fe13 с расходом 2 г/с транспортирующим газом аргоном подается в плазмотрон, нагревается до температуры плавления в плазменной струе мощностью 12 кВт и со скоростью 150 м/с переносится на деталь. Указанные выше параметры напыления соответствуют максимальному коэффициенту использования порошка (КИП) для данного плазмотрона. В дальнейшем температура в пятне напыления будет определяться скоростью взаимного перемещения плазмотрона и детали. В данном примере скорость взаимного перемещения плазмотрона и детали равна 50 мм/с, температура в пятне напыления составляет 500°С. При этом режиме содержание квазикристаллической фазы в напыленном покрытии соответствует 55% (фиг.3).

Пример 2

Состав порошка такой же, что и в первом примере, параметры напыления - те же. Скорость взаимного перемещения плазмотрона и детали составляет 30 мм/с. Температура в пятне напыления - 700°С. При этом режиме содержание квазикристаллической фазы в напыленном покрытии соответствует 80% (фиг.3).

Пример 3

Порошок и параметры напыления прежние. Скорость взаимного перемещения плазмотрона и детали составляет 10 мм/с. Температура в пятне напыления - 880°С. Этот режим дает 33% содержание квазикристаллической фазы в напыляемом покрытии (фиг.3).

График зависимости процентного содержания квазикристаллической фазы в покрытиях от температуры в пятне напыления, представленный на фиг.3, показывает, что повышение температуры в пятне напыления начиная с 400°С приводит к увеличению доли квазикристаллической фазы, которая достигает максимальной величины при 700°С, после чего уменьшается до 33% при 880°С.

На фиг.2 представлены дифрактограммы покрытий, напыленных при температурах в пятне напыления Т: а) 500°С; b) 650°С; с) 850°С.

Из анализа дифрактограмм видно, что основные пики интенсивности спектра лежат в диапазоне углов 2способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574 °, 42° и 46°, а структура покрытий неоднородна и состоит из смеси двух основных фаз: квазикристаллической способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574 и кубической способ получения покрытия из квазикристаллического сплава системы   al-cu-fe, патент № 2335574 .

Приведенные примеры показывают, что в интервале температур 650...750°С в пятне напыления возможно получение плазмонапыленных квазикристаллических покрытий из порошка состава Al65Cu22Fe 13 на деталях сложной геометрической формы, изготовленных из материала - свинец с температурой плавления 327°С, эта температура значительно ниже температуры плавления (˜1100°С) квазикристаллического сплава. Нанесение покрытий на поверхности материалов с температурой плавления близкой 650...750°С и выше не представляет технических сложностей.

Класс C23C4/12 характеризуемые способом распыления

способ лазерно-плазменного наноструктурирования металлической поверхности -  патент 2526105 (20.08.2014)
устройство и способ формирования аморфной покрывающей пленки -  патент 2525948 (20.08.2014)
способ получения магнитотвердого покрытия из сплава самария с кобальтом -  патент 2524033 (27.07.2014)
монокристаллическая сварка направленно упрочненных материалов -  патент 2516021 (20.05.2014)
способ восстановления внутренней поверхности ступицы направляющего аппарата центробежного электронасоса -  патент 2510426 (27.03.2014)
способ металлизации древесины -  патент 2509826 (20.03.2014)
способ получения защитно-декоративных покрытий на изделиях из древесины -  патент 2509823 (20.03.2014)
способ получения медного покрытия на керамической поверхности газодинамическим напылением -  патент 2506345 (10.02.2014)
способ получения покрытия нитрида титана -  патент 2506344 (10.02.2014)
способ газодинамического детонационного ускорения порошков и устройство для его осуществления -  патент 2506341 (10.02.2014)

Класс C23C4/08 содержащие только металлы

порошковый антифрикционный материал -  патент 2528542 (20.09.2014)
способ получения магнитотвердого покрытия из сплава самария с кобальтом -  патент 2524033 (27.07.2014)
металлическое покрытие со связующим веществом с высокой температурой перехода гамма/гамма' и деталь -  патент 2523185 (20.07.2014)
металлическое связующее покрытие с высокой гамма/гамма' температурой перехода и компонент -  патент 2521925 (10.07.2014)
способ получения эрозионностойких теплозащитных покрытий -  патент 2499078 (20.11.2013)
способ антикоррозионной обработки детали путем осаждения слоя циркония и/или циркониевого сплава -  патент 2489512 (10.08.2013)
способ формирования защитно-декоративного покрытия на металлической поверхности -  патент 2486276 (27.06.2013)
способ защиты от коррозии сварной металлоконструкции -  патент 2476621 (27.02.2013)
способ формирования молибден-углерод-медных покрытий на медных контактных поверхностях -  патент 2470089 (20.12.2012)
способ подготовки поверхности заготовок из химически активных тугоплавких металлов iv и v групп или сплавов на их основе для горячей деформации -  патент 2457276 (27.07.2012)

Класс C22C21/12 с медью в качестве следующего основного компонента

Наверх