способ изготовления крупных квазимонокристаллов высокотемпературных сверхпроводников

Классы МПК:H01L39/24 способы и устройства, специально предназначенные для изготовления или обработки предусмотренных в  39/00 приборов или их частей
Автор(ы):, ,
Патентообладатель(и):Нижельский Николай Александрович (RU),
Матвеев Валерий Александрович (RU),
Полущенко Ольга Леонидовна (RU)
Приоритеты:
подача заявки:
2006-04-19
публикация патента:

Изобретение может быть использовано при производстве сверхпроводниковых элементов для магнитных подшипников быстровращающихся роторов и высокополевых квазипостоянных магнитов, а также в любой отрасли машиностроения и приборостроения, где требуется создание высоких постоянных магнитных полей и бесконтактных пассивных магнитных подвесов, например в магнитных сепараторах или в транспорте на магнитной подушке. Сущность изобретения: в способе изготовления крупных квазимонокристаллов высокотемпературных сверхпроводников состава Y(RE)BaCuO для выращивания кристаллов изготавливают квазимонокристаллическую затравку, размещают ее на поверхности заготовки и подвергают заготовку кристаллизации, при этом затравку вырезают в виде параллелепипеда таким образом, чтобы две противоположные длинные грани соответствовали кристаллографической плоскости (001) затравки, а ребра длинных граней ориентируют в кристаллографическом направлении [110]±30°, при этом ширина затравки должна быть минимальной, но обеспечивающей устойчивость положения затравки на поверхности заготовки. Техническим результатом изобретения является получение крупных объемных квазимонокристаллов из высокотемпературных сверхпроводников состава Y(RE)BaCuO, где RE - редкоземельные элементы, такие как Gd, Sm, Nd, Eu и др., при одновременном сокращении времени кристаллизации. 6 ил. способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037

способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037

Формула изобретения

Способ изготовления крупных квазимонокристаллов высокотемпературных сверхпроводников состава Y(RE)BaCuO, заключающийся в том, что для выращивания кристаллов изготавливают квазимонокристаллическую затравку, размещают ее на поверхности заготовки и подвергают заготовку кристаллизации, отличающийся тем, что затравку вырезают в виде параллелепипеда таким образом, чтобы две противоположные длинные грани соответствовали кристаллографической плоскости (001) затравки, а ребра длинных граней ориентируют в кристаллографическом направлении [110]±30°, при этом ширина затравки должна быть минимальной, но обеспечивающей устойчивость положения затравки на поверхности заготовки.

Описание изобретения к патенту

Изобретение относится к области технологии материалов с особыми свойствами и может быть использовано при производстве сверхпроводниковых элементов для магнитных подшипников быстровращающихся роторов и высокополевых квазипостоянных магнитов, а также в любой отрасли машиностроения и приборостроения, где требуется создание высоких постоянных магнитных полей или бесконтактных пассивных магнитных подвесов, например в магнитных сепараторах или в транспорте на магнитной подушке.

Для реальных технических приложений одними из перспективных сверхпроводниковых материалов являются объемные квазимонокристаллические (монодоменные) высокотемпературные сверхпроводники (ВТСП) на основе Y(RE)BaCuO керамик (где RE - редкоземельные элементы, такие как Gd, Sm, Nd, Eu и др.), получаемые методом направленной кристаллизации. Важной задачей получения качественных объемных Y(RE)BaCuO керамических материалов с повышенными эксплуатационными и конструкционными характеристиками является выращивание крупных и однородных по составу кристаллов.

Известны способы получения объемных квазимонокристаллических ВТСП материалов на основе Y(RE)BaCuO керамики методом кристаллизации из перитектического расплава с затравкой, в котором затравки представляют собой объемные квазимонокристаллы различной формы или пленки, напыленные на текстурированные подложки.

Например, в патенте США №6, 236, 527 "Preferentially oriented, high temperature superconductors by seeding and a method for their preparation", заявленном 3 июля 2001 г. и выданном на имя Lee et al., для изготовления ВТСП монодоменных кристаллов состава Y(RE)BaCuO авторы используют мультизатравочный метод, в котором предлагается в качестве затравок использовать небольшие квазимонокристаллы, выколотые из текстурированной поликристаллической SmBa 2Cu3Ох и NdBa2 Cu3Ox керамики или пленки из REBa 2Cu3Ох, напыленные на текстурированные подложки, состоящие из зерен с малыми углами разориентации.

В статье "Sm1Ba 2Cu3O6,.5 seed fabrication for seeded peritectic solidification of Y 1Ba2Cu3O y", опубликованной в журнале Journal of material science, 33 (1998), 133-137 авторами J.C.L.Chou, J.S. Lettow, Wai Lo, D.A.Cardwell, H.T.Leung, Y.H.Shi, квазимонокристаллы иттрий-бариевой керамики получены с использованием небольших (порядка 5×5 мм2) затравок произвольной формы, изготовленных выкалыванием из текстурированной поликристаллической Sm 1Ba2Cu3O 6,5 керамики.

В статье "Stable production of large single-domain Y1.8Ba 2.4Cu3.4Oy/Ag by isothermal solidification", опубликованной в журнале Physica С, 357-360 (2001), 709-712 авторами С.Cai, H.Fujimoto, для получения квазимонокристаллических ВТСП образцов состава Y1.8Ba2.4Cu 3.4Oy/Ag предложены затравки, изготавливаемые методом напыления тонкой пленки NdBa2Cu 3Ox на поверхность MgO подложки размером 9×0,8 мм2. Затравка имела форму параллелепипеда, ориентация ребер которого соответствовала координатным кристаллографическим осям NdBa2Cu3O x.

В статье "The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of Y-Ba-Cu-O single-grain superconductors", опубликованной в Supercondactor Science and Technology 2005, 18, 64-72 авторами Sudhakar Reddy E, Hari Babu N, lida K, Withnell Т.D, Shi Y and Cardwell D.А показана возможность выращивания крупных монодоменных кристаллов YBaCuO посредством использования как затравок большой площади, так и длинномерных затравок. Затравки изготавливались путем вырезания из Sm-Ba-Cu-O монодоменного кристалла. Затравки большой площади имели размер 17×20 мм2 , длинномерные затравки имели форму параллелепипеда длиной 20 мм и шириной 5 мм с ориентацией ребер, параллельным координатным кристаллографическим осям SmBa2Cu 3Ox.

Таким образом, в известных технических решениях для изготовления квазимонокристаллов ВТСП материалов на основе Y(RE)BaCuO керамики использованы три типа затравок: малые затравки с площадью затравочной поверхности порядка 5×5 мм2, получаемые путем выкалывания из текстурированного поликристаллического образца, затравки большой площади 17×20 мм2 и длинномерные затравки длиной 20 мм и шириной 5 мм в форме параллелепипеда, изготавливаемые путем вырезания из квазимонокристалла. В качестве материала затравок используется керамика составов Sm-Ba-Cu-O и Nd-Ba-Cu-O.

Анализ указанных работ показывает, что при использовании малых затравок первичный кристалл, формируемый на начальной стадии кристаллизации, имеет небольшой размер и для его разращивания по всему объему заготовки требуется длительное время, в процессе которого не обеспечивается надежный ориентированный рост квазимонокристалла.

При использовании затравок большой площади 17×20 мм 2 первичный кристалл наследует форму и размеры затравки, что способствует быстрому росту основного кристалла и сокращению времени выращивания. Однако большая контактная площадь затравки и первичного кристалла способствует зарождению трещин вследствие усадочных процессов при эпитаксиальном росте кристалла из расплава. И, кроме того, изготовление и выращивание затравки большой площади и в особенности из керамики Sm123 трудоемко и значительно удорожает стоимость затравки.

При использовании длинномерных затравок в форме параллелепипеда с ориентацией ребер соответствующей координатным осям кристаллической решетки рост кристалла происходит в направлении [100] от длинного ребра затравки и, соответственно, время роста кристалла лимитируется расстоянием от длинного ребра до края заготовки, то есть его путь практически равен пути роста кристалла с малыми затравками, что не сокращает общее время кристаллизации. Кроме того, при использовании затравок шириной порядка 5 мм сохраняется высокая вероятность образования трещин в кристаллизуемом образце.

В известных технических решениях методом направленной кристаллизации стабильно получают монодоменные YBCO кристаллы площадью до 38×38 мм2. Изготовление квазимонокристаллов больших размеров представляет сложную технологическую задачу, так как по мере роста утрачивается затравочная наследственность из-за накопления структурных дефектов, значительно увеличивается длительность процесса, приводящая к повышению вероятности зарождения посторонних кристаллов, нарушающих монодоменность выращиваемого кристалла.

Поэтому для того, чтобы сократить время кристаллизации и одновременно с этим получить качественные крупные монодоменные кристаллы состава Y(RE)BaCuO из предварительно выращенных квазимонокристаллов вырезают длинномерные затравки в виде параллелепипеда таким образом, чтобы две противоположные длинные грани соответствовали затравочной плоскости (001), а их длинные ребра ориентированы в кристаллографическом направлении [110]±30°. При этом ширина затравки должна быть минимальной, но обеспечивающей устойчивость положения затравки на поверхности заготовки.

Заготовку с размещенной на ее поверхности затравкой помещают в печь для проведения кристаллизации.

Фиг.1. Фотография (а) и схема верхней поверхности (б) квазимонокристалла из Y(RE)BaCuO керамики.

Фиг.2. Схема вырезания длинномерных затравок из квазимонокристалла.

Фиг.3 Фотография набора квазимонокристаллических длинномерных затравок.

Фиг.4. Фотография заготовки способ изготовления крупных квазимонокристаллов высокотемпературных   сверхпроводников, патент № 2335037 55 мм и высотой 22 мм из сверхпроводящей YBaCuO керамики с размещенной на ее поверхности длинномерной затравкой из GdBaCuO керамики.

Фиг.5 Фотография квазимонокристаллов, выращенных в течение 50 часов при температуре 988°С с различными типами затравок:

(а) кристаллизация с использованием малой затравки с контактной площадью 4×4 мм2;

(б) кристаллизация с использованием длинномерной затравки с контактной площадью 28×1,8 мм2 и с длинными ребрами, параллельными кристаллографическому направлению [100];

(в) кристаллизация с использованием длинномерной затравки с контактной площадью 28×1,6 мм 2 и с длинными ребрами, параллельными кристаллографическому направлению [110];

(г) кристаллизация с использованием длинномерной затравки с контактной площадью 28×1,8 мм 2 и с длинными ребрами, ориентированными под углом 22° к кристаллографическому направлению [110].

Фиг.6. Фотографии YBaCuO квазимонокристалла, полученного с использованием длинномерной GdBaCuO затравки размером 38×1,8×5 мм 3 и распределение магнитной индукции над его поверхностью. Цена деления шкалы 1 мм:

(а) непосредственно после кристаллизации;

(б) после шлифования;

(в) распределение индукции захваченного магнитного поля над поверхностью квазимонокристалла.

Для реализации предлагаемого способа предварительно для изготовления затравки выращивают квазимонокристалл состава (RE)BaCuO, имеющего более высокую температуру плавления, чем кристаллизуемая заготовка. Фотография квазимонокристалла и направления его кристаллографических осей в плоскости (001) представлены на фиг.1.

Из данного квазимонокристалла длинномерные затравки вырезаются таким образом, чтобы направление их длинных ребер соответствовало кристаллографическому направлению [110]±30° (фиг.2), а ширина затравки должна быть минимальной, но обеспечивающей устойчивость положения затравки на поверхности заготовки.

Фотография набора затравок, вырезанных из квазимонокристалла, показана на фиг.3. Верхняя и нижняя поверхности данных затравок параллельны плоскости (001).

Затравку размещают плоскостью (001) на поверхности кристаллизуемой заготовки (фиг.4) и помещают в печь для проведения кристаллизации.

В процессе выдержки при температуре кристаллизации под затравкой в начальный момент образуется первичный кристалл, от которого начинает расти основной кристалл, прорастающий затем через весь объем кристаллизуемой заготовки.

В известных технических решениях [3, 4] длинные ребра длинномерных затравок параллельны кристаллографическому направлению [100]. Такая ориентация ребер не обеспечивает сокращения времени кристаллизации по сравнению с малыми затравками. В предлагаемом изобретении направление длинных ребер затравки ориентировано в кристаллографическом направлении [110]±30° в плоскости (001), как показано на фиг.2,а. Такая регламентация направления длинных ребер затравки относительно осей кристаллической решетки обеспечивает значительное уменьшение времени кристаллизации (более чем в два раза).

На фиг.5 показаны для сравнения фотографии квазимонокристаллов из YBaCuO керамики прошедших кристаллизацию в одинаковых условиях, но с различными типами затравок. На фотографиях видно, что за одно и то же время и при одинаковой температуре кристаллизации выросли квазимонокристаллы различной площади:

- при использовании длинномерной затравки с ребрами, параллельными направлению [110], вырос кристалл с наибольшей площадью (фиг.5,в), составляющий около 95% площади заготовки,

- при использовании затравки с ребрами, направленными под углом 22° к направлению [110], вырос кристалл площадью, составляющий около 90% площади заготовки (фиг.5,г),

- при использовании затравки с ребрами, параллельными направлению [100], вырос, кристалл площадью, составляющий около 50% площади заготовки (фиг.5,б),

- при использовании малой затравки вырос наименьший кристалл площадью, составляющей около 40% площади заготовки (фиг.5,а).

Необходимо отметить, что при кристаллизации с малой затравкой на образце наблюдаются посторонние кристаллы, в то время как при кристаллизации с длинномерными затравками они отсутствуют, что свидетельствует об улучшенной стабильности роста монокристалла при использовании длинномерной затравки. Появление посторонних кристаллов приводит к нарушению монодоменности, что резко снижает электромагнитные характеристики сверхпроводникового изделия и делает невозможным их использование в технических устройствах.

На фиг.6, а), б) представлены фотографии YBaCuO квазимонокристалла, полученного с использованием длинномерной GdBaCuO затравки размером 38×1,8×5 мм 3. Поверхность имеет характерную для квазимонокристаллического ВТСП материала текстуру. Распределение индукции магнитного поля над поверхностью квазимонокристалла после его охлаждении до Т=77К в магнитном поле 1,5 Тл, свидетельствуют о том, что кристалл имеет монодоменную структуру без слабых связей и большеугловых границ и захватывает большие магнитные поля с максимальной индукцией 1,38 Тл, что указывает на его высокое качество.

Источники информации

1. Lee, et al. "Preferentially oriented, high temperature superconductors by seeding and a method for their preparation", патент США №6, 256, 521, 03.07.2001.

2. Chou J. С L, Lettow J. S, Wai Lo, Cardwcll D.A, Leung H.T,. Shi Y.H, "Sm1Ва2 Cu3О6.5 seed fabrication for seeded peritectic solidification of Y1 Ba2Cu3O y", Journal of material science 33 1998, 133-137.

3. Cai С. and Fujimoto H., "Stable production of large single-domain Y1.8Ba2.4 Cu3.4Oy/Ag by isothermal solidification", Physica С.357-360, 2001, 709-712.

4. Sudhakar Reddy E, Hari Babu N, Iida K, Withnell T.D, Shi Y and Cardwell D.A "The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of Y-Ba-Cu-O single-grain superconductors", 2005 Supercond. Sci. Technol. 18 64-72.

Класс H01L39/24 способы и устройства, специально предназначенные для изготовления или обработки предусмотренных в  39/00 приборов или их частей

способ электроискрового формирования тонкопленочной втсп схемы -  патент 2508576 (27.02.2014)
металлическая сборка, заготовка для сверхпроводника, сверхпроводник и способ, пригодный для получения сверхпроводника -  патент 2507636 (20.02.2014)
устройство и способ для нанесения сверхпроводящих слоев -  патент 2503096 (27.12.2013)
способ осуществления гиперпроводимости и сверхтеплопроводности -  патент 2497236 (27.10.2013)
способ изготовления подложки для высокотемпературных тонкопленочных сверхпроводников и подложка -  патент 2481674 (10.05.2013)
способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала -  патент 2481673 (10.05.2013)
способ обработки высокотемпературного сверхпроводника -  патент 2477900 (20.03.2013)
способ изготовления сверхпроводниковых однофотонных детекторов -  патент 2476373 (27.02.2013)
способ формирования гладких ультратонких ybco пленок повышенной проводимости -  патент 2450389 (10.05.2012)
устройство для высокотемпературного осаждения сверхпроводящих слоев -  патент 2443038 (20.02.2012)
Наверх