резонатор силочувствительный

Классы МПК:G01P15/10 с помощью вибрирующих струн 
G01L1/10 путем измерения изменений частоты колебания напряженных элементов, например натянутых струн
Автор(ы):, , , , ,
Патентообладатель(и):Российская Федерация, от имени которой выступает государственный заказчик - Федеральное агентство по атомной энергии (RU),
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU),
Общество ограниченной ответственности "СКТБ ЭлПА" (RU)
Приоритеты:
подача заявки:
2006-07-11
публикация патента:

Изобретение относится к области измерений механической силы и производных от нее величин, момента силы, давления, массы, деформаций, линейных и угловых ускорений. Резонатор силочувствительный выполнен из одного стержня или системы из двух стержней с объединенными концами, образующих двухветвевой камертон. В средней части стержня и у одного из концов выполнены упругие шарниры. Часть стержня, заключенная между упругими шарнирами, выполняется с большей изгибной жесткостью, чем остальная часть. Техническим результатом является повышение относительной чувствительности, добротности резонатора и эффективности работы. 3 ил. резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511 резонатор силочувствительный, патент № 2329511 резонатор силочувствительный, патент № 2329511

Формула изобретения

Резонатор силочувствительный с изгибной формой колебаний, выполненный, по крайней мере, в виде одного стержня, концы которого жестко соединены с участками приложения измеряемой силы, отличающийся тем, что в средней части и на одном из концов стержня образованы упругие шарниры, ширина участка стержня, заключенная между упругими шарнирами, больше ширины остального участка стержня, при этом участки стержня монолитно соединены.

Описание изобретения к патенту

Изобретение относится к области измерений механической силы и связанных с ней величин: момента силы, давления, массы, деформаций, линейных и угловых ускорений. Известен пьезорезонансный датчик (см. заявку №200/324393 от 04.08.2003, опубликованную в БИ №4 от 10.02.2005), который является наиболее близким по технической сущности к заявленному устройству и взят в качестве прототипа.

Резонатор с изгибной формой колебаний выполнен в виде, по крайней мере, одного стержня, концы которого жестко соединены с участками приложения измеряемой силы. Недостатком прототипа являются ограниченные возможности получения высокой чувствительности при минимальных размерах резонатора вследствие уменьшения его добротности.

Решаемой технической задачей является создание устройства с более высокой чувствительностью и большей добротностью.

Техническим результатом является уменьшение критической силы стержня и его резонансной частоты за счет изменения формы изгибных колебаний резонатора. Технический результат достигается тем, что резонатор силочувствительный выполнен, по крайней мере, в виде одного стержня, концы которого жестко соединены с участками приложения измеряемой силы. Новым является то, что в средней части и на одном из концов стержня образованы упругие шарниры, при этом ширина участка стержня, заключенного между упругими шарнирами, больше ширины остального участка стержня.

На фиг.1а) изображена форма резонатора, выполненного из пластины в виде одного стержня; на фиг.1б) изображен резонатор, выполненный в виде системы из двух стержней с объединенными концами (двухветвевой камертон). На фиг.2а) представлена кинематическая схема стержня, нагруженного продольной силой Р, соответствующая стержневому резонатору прототипа; на фиг.2б) представлена кинематическая схема резонатора согласно изобретения, нагруженного продольной силой Р. На фиг.3а) представлена эквивалентная механическая схема резонатора согласно предлагаемому изобретению, а на фиг.3б) его электрическая эквивалентная схема по первой системе электрических аналогий.

Резонатор на фиг.1а), б) образован из следующих монолитно соединенных элементов: участки стержней 1, 2 с образованием между ними упругого шарнира 3; концы стержней соединены с участками 4, 5 приложения измеряемой силы F, при этом в местах перехода участков стержней 2 к участку 4 приложения измеряемой силы образованы упругие шарниры 6, а участок 5 жестко соединен с другим концом стержня на участке 1. У варианта исполнения резонатора в виде двухветвевого камертона объединенные концы стержней участков 1 соединены с участком 5 приложения измерительной силы при помощи ножки 7, ширина стержней на участке 2 имеет большее значение, чем у участков 1. На поверхности стержней при помощи методов металлизации (напыление, гальваническое осаждение и т.п.) нанесены электроды электромеханического преобразователя (на фиг.1 не изображены). В зависимости от физических свойств используемого в резонаторах материала электромеханические преобразователи для возбуждения и регистрации его колебаний могут быть пьезоэлектрического, магнитоэлектрического или электромагнитного типа, их принцип действия описан в технической литературе, в частности в книгах П.В.Новицкий и др. "Цифровые приборы с частотными датчиками", "Энергия" 1970 г., стр.136-141; или Г.А.Филатов и др. "Малогабаритные низкочастотные механические фильтры", "Связь" 1974 г., стр.33-74.

Импеданс электромеханического преобразователя по электрической стороне на частоте механического резонанса резонатора принимает экстремальные значения относительно значений за пределами резонансных частот, это используется для построения генераторов электрических сигналов с частотой генерации, равной частоте механического резонанса. Устройство работает следующим образом. Процесс резонансных изгибных колебаний стержневых резонаторов так же, как и у резонаторов других типов, сопровождается обменом потенциальной и кинетической энергий между двумя реактивными элементами системы с распределенными параметрами:

эквивалентной упругостью и эквивалентной массой; часть энергии теряется на трение в материале стержня при его деформации изгиба и в местах крепления концов стержня (см. эквивалентную схему фиг.3а). Использование в качестве резонатора системы из двух стержней с объединенными концами, совершающих противофазные изгибные колебания, позволяет уменьшить потери на трение в местах присоединения концов, к участкам приложения измеряемой силы увеличив, тем самым, добротность резонатора (выполнение резонатора в виде двухветвевого камертона).

При приложении к концам стержня (участки 4, 5 фиг.1) измеряемой силы частота механического резонанса изменяется, и соответственно изменяется частота генерации генератора, к которому подключен механический резонатор через его электромеханический преобразователь. Значение частоты механического резонанса f стержневого резонатора с изгибной формой колебаний для первой моды при действии на него продольной силы определяется следующим выражением:

резонатор силочувствительный, патент № 2329511

где Р - продольная сила;

f 0 - значение резонансной частоты при Р=0;

В - величина, обратная критической силе Ркр стержня резонатора (продольная сила, при которой стержень теряет устойчивость).

Функция преобразования силочувствительного резонатора, выраженная через относительное изменение его резонансной частоты (относительная девиация) резонатор силочувствительный, патент № 2329511 при значениях ВР в подкоренном члене выражения (1) не более 0,1 в первом приближении может быть представлена линейным членом разложения в степенной ряд функции резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511

В функции преобразования (2) конструктивные параметры (линейные размеры стержня резонатора, физические характеристики материала, условия крепления концов) присутствуют в неявном виде в выражении для величины В (обратной величине критической силы Ркр). Используя известное общее выражение для критической силы:

резонатор силочувствительный, патент № 2329511

Получим функцию преобразования (2) в виде:

резонатор силочувствительный, патент № 2329511

где l - длина стержня резонатора;

резонатор силочувствительный, патент № 2329511 - коэффициент приведения длины стержня, определяется условиями крепления его концов;

Е - модуль упругости материала стержня;

j - момент инерции стержня.

Для резонаторов с прямоугольным сечением, получивших наиболее широкое применение, выражение для момента инерции j имеет вид:

резонатор силочувствительный, патент № 2329511

где b - ширина стержня;

h - толщина стержня (изгибные колебания в плоскости l, h).

Тогда с учетом выражения (4) и закона Гука: резонатор силочувствительный, патент № 2329511резонатор силочувствительный, патент № 2329511 (резонатор силочувствительный, патент № 2329511 - механические напряжения в стержне под действием измеряемой силы Р; резонатор силочувствительный, патент № 2329511 - относительная деформация стержня) функция преобразования будет иметь вид:

резонатор силочувствительный, патент № 2329511

где резонатор силочувствительный, патент № 2329511

Функцию преобразования (6) можно представить и как зависимость от относительной деформации резонатор силочувствительный, патент № 2329511 :

резонатор силочувствительный, патент № 2329511

Выражения (6) и (7) для относительной девиации резонансной частоты силочувствительных резонаторов позволяют производить сравнительные оценки различных конструкций стержневых резонаторов, отличающихся размерами, условиями крепления концов стержней, физическими характеристиками материалов (модуль упругости Е, предельные напряжения резонатор силочувствительный, патент № 2329511 пр). В зависимости от режима применения: режима заданной силы или режима заданной деформации используют формулу (6) или (7) соответственно.

В формулах (6) и (7) множители перед резонатор силочувствительный, патент № 2329511 и резонатор силочувствительный, патент № 2329511 являются коэффициентами относительной чувствительности к механическому напряжению Срезонатор силочувствительный, патент № 2329511 и относительной деформации Cрезонатор силочувствительный, патент № 2329511 резонатора, обусловленные действием продольной измеряемой силы или заданной деформацией, соответственно.

резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511

Как видно из выражений (8) и (9), чувствительность зависит от квадрата отношения длины стержня резонатора к его толщине l/h, коэффициента приведения длины резонатор силочувствительный, патент № 2329511 , определяемого условиями крепления концов стержня и модуля упругости материала стержня для режима заданной силы. Возможность получения максимальной чувствительности ограничена максимальным значением отношения l/h, которое для стержневого резонатора должно быть меньше 300, т.к. для больших значений стержневой резонатор переходит в класс струнных резонаторов, требующих наличия начального натяжения струны. Другим ограничением повышения чувствительности за счет вариации размеров резонатора - уменьшения толщины h является уменьшение добротности резонатора и уменьшение эффективности электромеханического преобразователя (для резонаторов с пьезоэлектрическим преобразователем).

Еще одним конструктивным параметром, влияющим на чувствительность резонатора, является коэффициент приведения длины резонатор силочувствительный, патент № 2329511 . У резонатора-прототипа с жестким креплением концов к участкам приложения измеряемой силы значение коэффициента резонатор силочувствительный, патент № 2329511 равно 0,5; при замене жесткого крепления одного из концов на шарнирное коэффициент резонатор силочувствительный, патент № 2329511 увеличивается до 0,7, что позволяет в два раза увеличить относительную чувствительность при прочих равных конструктивных параметрах.

Выполнение еще одного упругого шарнира на участке между шарнирно закрепленным концом и другим жестко закрепленным концом (см. фиг.2б) при сохранении длины участка стержня между жестко закрепленным концом и шарниром в средней части, равной длине стержня резонатора-прототипа (фиг.2а), позволяет дополнительно увеличить коэффициент приведения длины резонатор силочувствительный, патент № 2329511 (уменьшить критическую силу Ркр). В книге В.И.Феодосьева "Сопротивление материалов", изд. "Наука", г.Москва, 1974, стр.446-447 представлено решение задачи по определению критической силы для кинематической схемы фиг.2б. Результатом является трансцендентное уравнение:

резонатор силочувствительный, патент № 2329511

при этом через к2 обозначено отношение

резонатор силочувствительный, патент № 2329511

С учетом общего выражения Ркр (3) формула для коэффициента приведения резонатор силочувствительный, патент № 2329511 будет иметь вид:

резонатор силочувствительный, патент № 2329511

Эффективность предлагаемого технического решения, в части увеличения чувствительности, может быть продемонстрирована на примере одного из возможных вариантов исполнения резонатора, у которого длина а - жесткой части стержня (шатуна), расположенного между двумя шарнирами, равна длине остальной части стержня l, расположенной между упругим шарниром в средней части и жестко закрепленным концом; т.е.

резонатор силочувствительный, патент № 2329511

Решением уравнения (12) является значение klрезонатор силочувствительный, патент № 2329511 1,165. Для значения klрезонатор силочувствительный, патент № 2329511 1,165 коэффициент приведения длины будет равен: резонатор силочувствительный, патент № 2329511 резонатор силочувствительный, патент № 2329511 2,70.

У резонатора прототипа с жестким креплением концов с равномерным сечением по длине стержня, как указывается выше, коэффициент приведения длины равен 0,5.

Выигрыш по чувствительности, определяемой относительной девиацией, предлагаемого технического решения относительно прототипа может быть выражен через отношение коэффициентов чувствительности резонаторов (при равенстве общих условий):

резонатор силочувствительный, патент № 2329511

Или

резонатор силочувствительный, патент № 2329511

Критерием равенства условий при сравнении предлагаемого технического решения с прототипом является:

- равенство размеров по длине стержней между точками крепления концов;

- равенство толщины стержней;

- равенство значений модуля упругости Е материалов стержней. Присвоив индекс 1 характеристикам предлагаемого резонатора и индекс 2 характеристикам резонатора прототипа, с учетом равенства общих условий выражения (13), (14) примут вид:

резонатор силочувствительный, патент № 2329511

при этом

резонатор силочувствительный, патент № 2329511

где L - длина стержня резонатора-прототипа между точками соединения его концов с участками приложения измеряемой силы;

а - размер жесткого участка 2 резонатора, согласно предлагаемому техническому решению, расположенного между упругими шарнирами 3, 6 (см. фиг.1).

Для варианта выполнения предлагаемого резонатора с отношением резонатор силочувствительный, патент № 2329511 значение резонатор силочувствительный, патент № 2329511 1, как указывалось выше, равно 2,7 (коэффициент резонатор силочувствительный, патент № 2329511 2 прототипа равен 0,5), значение отношения (15) равно:

резонатор силочувствительный, патент № 2329511

Таким образом, выполнение упругих шарниров в месте соединения одного из концов стержня резонатора с участком приложения измеряемой силы и в средней части позволяет, при прочих равных условиях, в несколько раз повысить коэффициент преобразования (чувствительность). Приведенный выше качественный анализ проверялся моделированием на ЭВМ с использованием метода конечных элементов. Результаты моделирования подтвердили существенный выигрыш по чувствительности предлагаемого технического решения по сравнению с прототипом.

Выполнение упругих шарниров 3, 6 на стержнях резонатора согласно предлагаемому техническому решению (фиг.1а, б) позволяет не только увеличить чувствительность, но и увеличить его добротность. Это обусловлено уменьшением резонансной частоты за счет изменения формы изгибных колебаний резонатора.

Механическая система согласно фиг.2б эквивалентна консольному стержню длиной l с сосредоточенной массой на конце, пропорциональной массе шатуна длиной а. Угловое перемещение шатуна резонатор силочувствительный, патент № 2329511 определяется поперечным перемещением Y шарнирного соединения шатуна со стержнем l (точка А фиг.2б). Влияние шатуна на колебания в механической системе фиг.2б проявляется в виде силы Р ш, действующей в точке соединения шатуна с участком стрежня длиной l - точке А; при этом:

резонатор силочувствительный, патент № 2329511

где Мш - момент, обусловленный угловым ускорением шатуна;

jш - момент инерции шатуна относительно оси вращения (точка D фиг.2б).

Для варианта выполнения шатуна в виде однородного, с равномерным по длине а сечением b·h, стержня момент инерции равен:

резонатор силочувствительный, патент № 2329511

где mш - масса шатуна.

Учитывая, что резонатор силочувствительный, патент № 2329511 - выражение (17) с учетом (18) принимает вид:

резонатор силочувствительный, патент № 2329511

где резонатор силочувствительный, патент № 2329511 - эквивалентная масса шатуна.

Таким образом, система с жестким шатуном фиг.2б эквивалентна консольному стержню с сосредоточенной массой на его свободном конце со значением, равным 1/3 массы шатуна (для однородного с равномерным по длине сечением шатуна). Ее эквивалентная механическая схема может быть представлена в виде параллельно соединенных: упругого элемента с податливостью е (см. фиг.3а) двух масс - эквивалентной массы шатуна резонатор силочувствительный, патент № 2329511 и эквивалентной массы консольного стержня резонатор силочувствительный, патент № 2329511 и сопротивления трения SТ.

Анализ эквивалентной механической схемы фиг.3а удобно проводить с привлечением метода электромеханических аналогий. При использовании первой системы электромеханических аналогий параллельное соединение механических элементов: двух масс m1, m 2, податливости е и сопротивления трения S Т (см. фиг.3а), представляется в виде последовательного соединения их аналогов - индуктивностей L1 , L2, конденсатора С и активного сопротивления R, соответственно (см. фиг.3б); силе F(t), приложенной к параллельно соединенным механическим элементам, эквивалентен источник ЭДС, включенный последовательно с электрическими элементами - аналогами. Выражения для добротности Qэ последовательного электрического резонансного контура (фиг.3б) и механического контура Qм (фиг.3а) имеет вид:

резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511

где

резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511 - значения резонансных частот электрического и механического контуров соответственно, резонатор силочувствительный, патент № 2329511

резонатор силочувствительный, патент № 2329511 э, резонатор силочувствительный, патент № 2329511 м - волновые сопротивления электрического и механического контуров;

m1, m 2 - эквивалентные массы кинематической системы, соответствующие эквивалентной массе консольно-закрепленного стержня длиной l и эквивалентной массе шатуна.

Из выражения (21) следует: при постоянстве значений податливости е консольно закрепленного стержня и соответственно его сопротивления ST добротность системы растет с ростом суммы эквивалентных масс стержня l и шатуна а. Эффективность согласно предлагаемого технического решения в части увеличения добротности можно выразить через отношение добротностей двух механических систем: резонатора с шатуном с эквивалентной массой m2 и резонатора с невесомым шатуном (m2=0), эквивалентного консольно-закрепленному стержню.

резонатор силочувствительный, патент № 2329511

где m1 - эквивалентная масса консольно закрепленного стержня.

Кроме увеличения силовой чувствительности и добротности резонатора предлагаемое техническое решение позволяет повысить эффективность электромеханического преобразователя пьезоэлектрического типа. При изгибных колебаниях резонатора-прототипа знак механических напряжений от его деформаций дважды меняется по длине стержня. Нейтральные сечения, разделяющие участки стержня с разными знаками механических напряжений, находятся на расстоянии 0,224 общей длины от мест крепления концов стержня. Наибольшие механические напряжения находятся в зоне крепления концов и поэтому электроды электромеханического преобразователя пьезоэлектрического типа размещают на участках с максимальными механическими напряжениями; длина этих участков меньше 0,224 от общей длины стержня. Выполнение упругого шарнира в средней части стержня существенно меняет характер распределения механических напряжений по его длине при изгибных колебаниях стержня; зоны с одним знаком механических напряжений охватывают большую часть стержня, а нейтральные сечения будут располагаться вблизи упругого шарнира. Это позволяет расширить зону размещения электродов пьезоэлектрического преобразователя, повысив эффективность его работы (уменьшить эквивалентное сопротивление резонатора).

Дальнейшее повышение эффективности работы пьезоэлектрического типа может быть достигнуто за счет выполнения участка стержня 1, расположенного между жестко соединенным концом с участком 5 приложения измеряемой силы и упругим шарниром 3 в средней части, с уменьшающейся плавно или ступенчато шириной (в направлении от участка 5 к шарниру 3). Повышение эффективности при переменной ширине участка 1 является следствием выравнивания по длине механических напряжений. Был изготовлен образец, который подтвердил работоспособность устройства, относительная девиация (чувствительность) увеличена не менее чем в три раза, а добротность возросла в два раза.

Класс G01P15/10 с помощью вибрирующих струн 

струнный акселерометр -  патент 2528103 (10.09.2014)
способ настройки струнного акселерометра -  патент 2526200 (20.08.2014)
датчик резонаторный -  патент 2477491 (10.03.2013)
виброчастотный микромеханический акселерометр -  патент 2442992 (20.02.2012)

датчик резонаторный -  патент 2410705 (27.01.2011)
датчик резонаторный -  патент 2402020 (20.10.2010)
датчик резонаторный -  патент 2371728 (27.10.2009)
датчик резонаторный -  патент 2281515 (10.08.2006)
дифференциальный струнный акселерометр и способ его изготовления -  патент 2258230 (10.08.2005)
датчик резонаторный -  патент 2247993 (10.03.2005)

Класс G01L1/10 путем измерения изменений частоты колебания напряженных элементов, например натянутых струн

устройство и способ контроля текучих сред -  патент 2365886 (27.08.2009)
высокочувствительные способ и устройство для измерения силы/массы с использованием системы фазовой автоподстройки частоты -  патент 2334204 (20.09.2008)
способ и устройство извлечения информации о напряженно-деформированном состоянии гидротехнических сооружений -  патент 2280846 (27.07.2006)
способ возбуждения и измерения частоты колебаний колебательного звена резонансных датчиков -  патент 2269385 (10.02.2006)
способ определения оптимального месторасположения подкрепляющей опоры в стержне при потере устойчивости -  патент 2175759 (10.11.2001)
устройство для измерения параметров предварительно напряженных арматурных элементов железобетонных конструкций -  патент 2103665 (27.01.1998)
динамометр -  патент 2051343 (27.12.1995)
струнный датчик силы -  патент 2042121 (20.08.1995)
частотный датчик силы -  патент 2039344 (09.07.1995)
Наверх