способ получения порошка на железной основе (его варианты)

Классы МПК:B22F9/08 литьем, например через сита или в воде, распылением
B22F9/04 из твердого материала, например дроблением, измельчением или помолом
B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") (RU)
Приоритеты:
подача заявки:
2006-09-14
публикация патента:

Изобретение относится к порошковой металлургии, в частности к способам получения порошков на железной основе, и может быть использовано при изготовлении порошковых конструкционных деталей, эксплуатируемых в условиях износа, в том числе при повышенных температурах. Способ включает получение расплава на основе с содержанием никеля не более 4 мас.%, распыление его сжатым воздухом, восстановительный отжиг полученного порошка-сырца, дробление, введение в полученный порошок механическим смешиванием добавок, содержащих медь и молибден в виде оксидов меди и молибдена или полимолибдатов аммония, с суммарным содержанием легирующих элементов, вводимых в виде соединений, не превышающим 25 мас.%, диффузионно-восстановительный отжиг в водородосодержащей атмосфере при 800-850°С и последующее измельчение. Далее к полученному легированному порошку механическим смешиванием добавляют порошковую лигатуру железокремниевого сплава с размером частиц не более 45 мкм и с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.%. Согласно второму варианту способа одновременно с кобальтом и молибденом в порошок вводят медь в виде ее оксидов. Полученный порошок обладает высокой уплотняемостью и прочностью прессовки, является не склонным к макросегрегации легирующих элементов и обеспечивает получение износо- и теплостойких изделий с высокими эксплутационными свойствами. 2 н. и 2 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ получения порошка на железной основе, включающий получение расплава на основе железа, распыление его сжатым воздухом с получением порошка-сырца, восстановительный отжиг полученного порошка-сырца и последующее его дробление, введение в полученный порошок механическим смешиванием добавок, содержащих медь и молибден в виде оксидов меди и молибдена или полимолибдатов аммония, с суммарным содержанием легирующих элементов, вводимых в виде соединений, не превышающим 25 мас.%, диффузионно-восстановительный отжиг в водородосодержащей атмосфере при 800-850°С и последующее измельчение, отличающийся тем, что после измельчения к полученному легированному порошку механическим смешиванием добавляют порошковую лигатуру железо-кремниевого сплава с размером частиц не более 45 мкм и с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.%.

2. Способ по п.1, отличающийся тем, что содержание меди и кремния в полученном порошке составляет 1-3 мас.% каждого.

3. Способ получения порошка на железной основе, включающий получение расплава на основе железа, распыление его сжатым воздухом с получением порошка-сырца, восстановительный отжиг полученного порошка-сырца и его последующее дробление, введение в полученный порошок механическим смешиванием легирующих добавок, содержащих кобальт и молибден в виде оксидов кобальта и молибдена или полимолибдатов аммония, с суммарным содержанием легирующих элементов, вводимых в виде соединений, не превышающим 25 мас.%, диффузионно-восстановительный отжиг в водородосодержащей атмосфере при 800-850°С и последующее измельчение, отличающийся тем, что одновременно с кобальтом и молибденом в порошок вводят медь в виде ее оксидов, а после измельчения к полученному легированному порошку механическим смешиванием добавляют порошковую лигатуру железо-кремниевого сплава с размером частиц не более 45 мкм и с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.%.

4. Способ по п.3, отличающийся тем, что содержание меди и кремния в полученном порошке составляет 1-3 мас.% каждого.

Описание изобретения к патенту

Изобретение относится к порошковой металлургии, в частности к способам получения порошков на железной основе и предназначено для изготовления порошковых конструкционных деталей, эксплуатируемых в условиях износа, в том числе при повышенных температурах.

Изобретение наиболее эффективно может быть использовано при производстве износостойких изделий различной конфигурации, например деталей металлургического оборудования или автомобилей, методом прессования с последующим спеканием с использованием прессов-автоматов и проходных печей конвейерного или толкательного типов.

Для обеспечения необходимого комплекса потребительских свойств порошок должен иметь высокую уплотняемость (более 6,95 г/см 3 при давлении прессования 700 МПа), хорошую прочность прессовки (более 15 МПа при плотности спрессованного образца 7 г/см3), а в спеченном состоянии обеспечивать получение высокопрочных, износостойких и теплостойких деталей, эксплуатируемых вплоть до 750°С.

Известен способ получения порошка на железной основе для указанных целей, включающий получение предварительно легированного молибденом и марганцем водораспыленного железного порошка, добавление в него хрома в виде феррохрома (FeCr) и меди в виде металлического порошка или методом частичного легирования. Применение такого порошка для получения изделий методом прессования с последующим спеканием обеспечивает достижение при комнатной температуре твердости 219-244 HV, предела прочности при растяжении более 650 МПа и относительного удлинения более 0,8% (патент ЕР 0779847 В1, МПК В22F 1/00, С22С 33/01, опубл. 22.02.1996).

Недостатками порошка, полученного этим способом, являются низкая прочность прессовки, так как водораспыленные порошки имеют округлую форму частиц, а также повышенная склонность к окислению из-за наличия в водораспыленном порошке добавок марганца, обладающего высоким сродством к кислороду и окисляющегося на стадии распыления расплава Fe-Mo-Mn водой высокого давления. Образовавшиеся при этом оксиды марганца в отличие от оксидов железа и молибдена, которые восстанавливаются в процессе последующего восстановительного отжига порошка-сырца, остаются в порошке в виде неметаллических включений, снижая уплотняемость, ухудшая механические свойства и усиливая износ пресс-оснастки.

Известен также способ получения порошка для материалов с улучшенной износостойкостью при высоких температурах, включающий механическое смешивание матричного порошка Fe - 6,5%, Co - 1%, Ni - 1,5%, Mo с 15% порошка упрочняющей фазы Со - 28%, Mo - 8,5%, Cr - 2,5% Si (New sintered valve seat material for LPG engines // Metal Powder Report. 1988. V.43, №7, 8, p.538).

Недостатками этого способа являются высокая стоимость порошка упрочняющей фазы на основе дорогостоящего кобальта и невозможность ее равномерного распределения в матрице спеченного материала. Кроме того, для придания необходимого комплекса эксплуатационных свойств при повышенных температурах материал пропитывают свинцом, что существенно ухудшает экологическую чистоту технологического процесса и материала в процессе эксплуатации.

Прототипом настоящего изобретения является способ получения порошка на железной основе, включающий подготовку расплава, распыление его сжатым воздухом, восстановительный отжиг полученного порошка-сырца и последующее дробление. Затем в отожженный порошок методом механического смешивания вводят порошкообразные легирующие добавки в виде соединений металлов, имеющих низкое сродство к кислороду, при этом их суммарное содержание не превышает 25 мас.%. Далее смесь подвергают диффузионно-восстановительному отжигу в водородосодержащей атмосфере при 800-850°С с последующим измельчением. После этого к частично легированному железному порошку механическим смешиванием добавляют порошок никеля. В качестве соединений металлов используют оксиды молибдена или полимолибдаты аммония, а также оксиды меди и оксиды кобальта (патент РФ №2202445, МПК В22F 9/06, 9/08, опубл. 20.04.2003. Бюл. №11).

Недостатками порошка, полученного этим способом, являются низкие износостойкость и устойчивость против окисления спеченной стали на его основе в процессе эксплуатации при повышенных температурах.

Задача, на решение которой направлено изобретение, заключается в получении порошка на железной основе, обладающего высокой уплотняемостью (более 6,95 г/см3 при 700 МПа), хорошей прочностью прессовки (более 15 МПа при 7 г/см3), не склонного к макросегрегации легирующих элементов и обеспечивающего получение износо- и теплостойких изделий из спеченных сталей с твердостью не менее 60 HRA, пределом прочности при изгибе не менее 850 МПа, ударной вязкостью более 5 Дж/см2 и горячей твердостью при 300°С и выше не менее 150 HV. Кроме того, порошок должен обеспечивать стабильность размеров и свойств, получаемых из него изделий в условиях крупносерийного производства и в процессе эксплуатации.

Технический результат изобретения состоит в получении порошка на железной основе, обеспечивающего достижение при повышенных температурах высоких износостойкости и прочности спрессованных и спеченных из него изделий при сохранении высокого уровня технологических характеристик.

Технический результат по первому варианту достигается тем, что в способе получения порошка на железной основе, включающем подготовку расплава, распыление его сжатым воздухом, восстановительный отжиг полученного порошка-сырца, последующее дробление, введение в полученный порошок механическим смешиванием легирующих добавок, содержащих медь и молибден в виде оксидов меди и молибдена или полимолибдатов аммония, при этом суммарное содержание оксидов, вводимых в виде соединений, не превышает 25 мас.%, диффузионно-восстановительный отжиг в водородосодержащей атмосфере при 800-850°С, последующее измельчение и добавление механическим смешиванием порошка никеля, согласно изобретению в легированный порошок одновременно с порошком никеля с размером частиц не более 25 мкм вводят порошковую лигатуру железо-кремниевого сплава с размером частиц не более 45 мкм и с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.%. При этом содержание меди и кремния в порошке составляет 1-3 мас.% каждого.

Технический результат по второму варианту достигается тем, что в способе получения порошка на железной основе, включающем подготовку расплава, распыление его сжатым воздухом, восстановительный отжиг полученного порошка-сырца, последующее дробление, введение в полученный порошок механическим смешиванием легирующих добавок, содержащих кобальт и молибден в виде оксидов кобальта и молибдена или полимолибдатов аммония, при этом суммарное содержание оксидов, вводимых в виде соединений, не превышает 25 мас.%, диффузионно-восстановительный отжиг в водородосодержащей атмосфере при 800-850°С, последующее измельчение и добавление механическим смешиванием порошка никеля, согласно изобретению одновременно с кобальтом и молибденом в железный порошок вводят медь в виде ее оксидов, а после измельчения к легированному порошку механическим смешиванием вместе с порошком никеля с размером частиц не более 25 мкм добавляют порошковую лигатуру железо-кремниевого сплава с размером частиц не более 45 мкм и с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.%. При этом содержание меди и кремния в порошке составляет 1-3 мас.% каждого.

Предлагаемые способы отличаются от известного тем, что одновременно с кобальтом и молибденом, существенно повышающими теплостойкость порошковых сталей, в железный порошок вводят медь в виде оксидов (вариант II), а после диффузионно-восстановительного отжига и измельчения в легированный порошок механическим смешиванием вместе с порошком никеля крупностью не более 25 мкм дополнительно вводят кремний в виде порошковой лигатуры железо-кремниевого сплава с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.% с размером частиц не более 45 мкм (варианты I и II). Содержание меди и кремния в порошке составляет 1-3 мас.% каждого (варианты I и II).

Медь вводят в порошок методом частичного легирования для повышения теплопроводности порошковых изделий. Кроме того, медь, образуя жидкую фазу в процессе спекания, компенсирует усадку и интенсифицирует диффузионные процессы, оказывая положительное воздействие на повышение размерной точности и механических свойств спеченных сталей (варианты I и II).

Никель вводят в частично легированный медью и молибденом либо кобальтом, медью и молибденом железный порошок механическим смешиванием в виде частиц размером не более 25 мкм для более равномерного распределения в массе порошка основы с целью создания при последующем спекании спрессованных изделий порошковой стали с композиционной структурой, в которой высокопрочные частицы порошка основы окружены износостойким вязким аустенитом, обогащенным до 40-50% никелем (варианты I и II). Применение никелевого порошка с размером частиц более 25 мкм приводит к снижению ударной вязкости спеченной стали вследствие недостаточно равномерного распределения никеля в межчастичных границах - местах преимущественного разрушения порошковых спеченных сталей.

Кремний вводят в частично легированный медью и молибденом либо кобальтом, медью и молибденом железный порошок в виде порошка железокремниевого сплава с содержанием кремния либо 18-21 мас.%, либо 51-56 мас.% для повышения износостойкости и устойчивости против окисления при повышенных температурах (варианты I и II). Составы железокремниевых сплавов выбраны исходя из того, что в указанных интервалах концентраций кремния при спекании деталей из порошка частицы таких сплавов плавятся и образуют жидкую фазу, что способствует ускорению диффузионных процессов по границам частиц порошка-основы. В результате образуется высокопрочная, износостойкая металлическая матрица. Кроме того, сфероидизируются остаточные поры, что также способствует повышению механических свойств спеченной стали. Для более равномерного распределения порошка железокремниевого сплава в массе порошка максимальный размер частиц не должен превышать 45 мкм (варианты I и II). Частицы сплава размером более 45 мкм при спекании, в процессе плавления, взаимодействуют с окружающими их частицами порошка-основы, и на месте железокремниевых частиц образуются крупные поры, приводящие к ухудшению механических характеристик, особенно пластичности и ударной вязкости. Порошок железокремниевого сплава берут в таком количестве, чтобы содержание кремния в готовом порошке составляло от 1 до 3 мас.%. Ограничения по содержанию кремния и меди в порошке на уровне 1-3 мас.% каждого обусловлены тем, что при концентрациях менее 1 мас.% их влияние на свойства и размерную точность спеченных изделий незначительно. При содержании меди выше 3 мас.% наблюдается существенное изменение размеров спрессованных деталей в процессе спекания и нарушается их размерная точность. Повышение содержания кремния более 3 мас.% приводит к сильному охрупчиванию спеченного материала (варианты I и II).

Совместное легирование железного порошка никелем, кремнием, молибденом и медью позволяет получать износостойкие спеченные стали с температурой эксплуатации до 300°С (вариант I).

Совместное легирование железного порошка кобальтом, никелем, молибденом, медью и кремнием позволяет повысить температуру эксплуатации износостойких спеченных сталей до 700-800°С (вариант II).

Примеры осуществления способа

Пример 1 (вариант I).

Выплавляют расплав железоуглеродистого материала, который распыляют сжатым воздухом. Полученный порошок-сырец подвергают восстановительному отжигу, в процессе которого образуются конгломераты частиц железа с развитой поверхностью, имеющей губчатое строение. После отжига железный порошок дробят и механически смешивают с порошками легирующих добавок, содержащих молибден и медь в виде полимолибдатов аммония и оксида меди, из расчета получения в порошке 0,5 мас.% молибдена и 2 мас.% меди. Смесь подвергают диффузионно-восстановительному отжигу при 820°С в атмосфере водорода с последующим измельчением. К порошку, частично-легированному молибденом и медью, механическим смешиванием добавляют порошок никеля с размером частиц 10 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 19 мас.% и размером частиц 30 мкм и менее из расчета получения в порошке 4 мас.% никеля и 1,5 мас.% кремния. Состав и свойства железного порошка, а также характеристики порошковой стали, спеченной при 1200°С, приведены в таблице 1.

Пример 2 (вариант I).

Получение порошка на железной основе, содержащего после проведения диффузионно-восстановительного отжига 0,5 мас.% молибдена и 2 мас.% меди, осуществляют способом, аналогичным описанному в примере 1. К этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 10 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 53 мас.% и размером частиц 5 мкм и менее из расчета получения в порошке 8 мас.% никеля и 2,5 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1200°С, приведены в таблице 1.

Пример 3 (вариант I).

Получение железного порошка осуществляют способом, аналогичным описанному в примере 1. Затем этот порошок механически смешивают с порошками легирующих добавок, содержащих молибден и медь, в виде оксидов молибдена и меди, из расчета получения в порошке 1 мас.% молибдена и 1,5 мас.% меди. Смесь подвергают диффузионно-восстановительному отжигу при 850°С в атмосфере водорода с последующим измельчением. К этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 20 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 20 мас.% и размером частиц 15 мкм и менее из расчета получения в порошке 4 мас.% никеля и 2 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1200°С, приведены в таблице 1.

Порошки, полученные в примерах 1, 2 и 3, предназначены для изготовления деталей методом прессования с последующим спеканием, эксплуатируемых в условиях износа и повышенных температур (до 250-300°С).

Пример 4 (вариант II).

Получение железного порошка осуществляют способом, аналогичным описанному в примере 1. К порошку железа механически домешивают порошки легирующих добавок, содержащих кобальт, молибден и медь в виде оксидов кобальта, молибдена и меди, из расчета получения в порошке 6,5 мас.% кобальта, 1,5 мас.% молибдена и 1,5 мас.% меди. Смесь подвергают диффузионно-восстановительному отжигу при 840°С в атмосфере водорода с последующим измельчением. К этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 10 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 20 мас.% и размером частиц 15 мкм и менее из расчета получения в порошке 1,5 мас.% никеля и 2 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1250°С, приведены в таблице 2.

Пример 5 (вариант II).

Получение порошка на железной основе, содержащего после проведения диффузионно-восстановительного отжига 6,4 мас.% кобальта, 1,3 мас.% молибдена и 1,4 мас.% меди осуществляют способом, аналогичным описанному в примере 4. Затем к этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 10 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 53 мас.% и размером частиц 5 мкм и менее из расчета получения в порошке 2 мас.% никеля и 2,5 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1250°С, приведены в таблице 2.

Пример 6 (вариант II).

Получение порошка на железной основе, содержащего после проведения диффузионно-восстановительного отжига 6,4 мас.% кобальта, 1,3 мас.% молибдена и 1,4 мас.% меди осуществляют способом, аналогичным описанному в примере 4. Затем к этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 20 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 19 мас.% и размером частиц 30 мкм и менее из расчета получения в порошке 4 мас.% никеля и 1,5 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1250°С, приведены в таблице 2.

Пример 7 (вариант II).

Получение железного порошка осуществляют способом, аналогичным описанному в примере 1. К порошку железа механически домешивают порошки легирующих добавок, содержащих кобальт, медь и молибден, в виде оксидов кобальта и меди, а также полимолибдатов аммония, из расчета получения в порошке 6,5 мас.% кобальта, 2 мас.% меди и 1 мас.% молибдена. Смесь подвергают диффузионно-восстановительному отжигу при 830°С в атмосфере водорода с последующим измельчением. К этому порошку механическим смешиванием добавляют порошок никеля с размером частиц 10 мкм и менее и порошковую лигатуру железокремниевого сплава с содержанием кремния 55 мас.% и размером частиц 15 мкм и менее из расчета получения в порошке 2 мас.% никеля и 2 мас.% кремния. Состав и свойства полученного порошка, а также характеристики порошковой стали, спеченной при 1250°С, приведены в таблице 2.

Порошки, полученные в примерах 4, 5, 6 и 7, предназначены для изготовления деталей конструкционных износо- и теплостойких до 750°С деталей, изготавливаемых методом прессования с последующим спеканием.

способ получения порошка на железной основе (его варианты), патент № 2327548 способ получения порошка на железной основе (его варианты), патент № 2327548

Класс B22F9/08 литьем, например через сита или в воде, распылением

устройство и способ гранулирования расплавленного металла -  патент 2524873 (10.08.2014)
способ распыления расплавленных металлов -  патент 2508964 (10.03.2014)
способ диспергирования наноразмерного порошка диоксида кремния ультразвуком -  патент 2508963 (10.03.2014)
способ получения металлического порошка -  патент 2492028 (10.09.2013)
способ производства гранул жаропрочных сплавов -  патент 2468891 (10.12.2012)
способ получения порошка ферритной азотируемой стали -  патент 2460612 (10.09.2012)
способ получения порошка дисперсно-упрочненной ферритной стали -  патент 2460611 (10.09.2012)
способ получения композиционного порошка из расплавов металлов -  патент 2422247 (27.06.2011)
стальная литая дробь -  патент 2406777 (20.12.2010)
способ получения распыленного дисперсно-упрочненного порошка на медной основе -  патент 2397044 (20.08.2010)

Класс B22F9/04 из твердого материала, например дроблением, измельчением или помолом

способ получения суспензии высокодисперсных частиц металлов и их соединений и устройство для его осуществления -  патент 2523643 (20.07.2014)
способ получения пористого порошка никелида титана -  патент 2522257 (10.07.2014)
способ получения полупроводниковых наночастиц, заканчивающихся стабильным кислородом -  патент 2513179 (20.04.2014)
устройство для получения наночастиц материалов -  патент 2493936 (27.09.2013)
способ получения гранулированной алюминиевой пудры -  патент 2489228 (10.08.2013)
способ подготовки порошка на основе чугунной стружки -  патент 2486031 (27.06.2013)
способ получения порошковых магнитных материалов -  патент 2484926 (20.06.2013)
устройство вторичного охлаждения литых тонких лент из сплава на основе неодима, железа и бора и устройство для литья тонких лент из сплава на основе неодима, железа и бора -  патент 2461441 (20.09.2012)
способ получения композиционного порошкового материала системы металл - керамика износостойкого класса -  патент 2460815 (10.09.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)

Класс B22F1/00 Специальная обработка металлических порошков, например для облегчения обработки, для улучшения свойств; металлические порошки как таковые, например смеси порошков различного состава

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ подготовки шихты порошковой проволоки и устройство для определения угла естественного откоса порошковых материалов -  патент 2528564 (20.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
способ получения модифицированных наночастиц железа -  патент 2513332 (20.04.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
порошковая ферромагнитная композиция и способ ее получения -  патент 2510993 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)
Наверх