способ повышения надежности партий полупроводниковых изделий

Классы МПК:G01R31/26 испытание отдельных полупроводниковых приборов
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2006-11-22
публикация патента:

Изобретение относится к микроэлектронике, а именно к способу повышения надежности партий полупроводниковых изделий (ППИ) в процессе серийного производства. Сущность: проводят электротермотренировки (ЭТТ) партии ППИ в электрическом и температурном режимах, установленных в технических условиях и технологических картах. После извлечения ППИ из стенда начинают проверку электрических параметров ППИ при комнатной температуре и проводят ее для всей партии не более 8 часов после изъятия изделий из стенда. При этом требования к электрическим параметрам ужесточают относительно норм, указанных в технических условиях, на 2способ повышения надежности партий полупроводниковых изделий, патент № 2326394 , где способ повышения надежности партий полупроводниковых изделий, патент № 2326394 - погрешность измерения.

Формула изобретения

Способ повышения надежности партий полупроводниковых изделий, в соответствии с которым на партии изделий проводят электротермотренировку на стенде с подачей электрического и температурного режима, после которой проводят проверку электрических параметров изделий, отличающийся тем, что проверку электрических параметров изделий начинают сразу после извлечения изделий из стенда и проводят ее для всей партии не более 8 ч после изъятия изделий из стенда, а требования к электрическим параметрам ужесточают относительно норм, указанных в технических условиях, на 2способ повышения надежности партий полупроводниковых изделий, патент № 2326394 , где способ повышения надежности партий полупроводниковых изделий, патент № 2326394 - погрешность измерения.

Описание изобретения к патенту

Изобретение относится к микроэлектронике, а именно к способу повышения надежности партий полупроводниковых изделий (ППИ) (диодов, транзисторов и интегральных схем (ИС)) в процессе серийного производства за счет дополнительной отбраковки потенциально ненадежных изделий после проведения электротермотренировки.

Известен способ повышения надежности выпускаемых партий ППИ путем проведения 100%-ных отбраковочных испытаний в процессе выходного контроля партий изделий на заводе изготовителе [1]. Недостаток способа заключается в том, что время контроля электрических параметров после испытаний не оговорено, что не позволяет достоверно судить о надежности всех изделий.

Известен способ повышения надежности партий изделий путем проведения электротермотренировки (ЭТТ) [2, 3]. Цель ЭТТ - обеспечить нагрузку, равную или несколько меньшую максимально допустимой при эксплуатации ППИ, или обеспечить такие эквивалентные условия испытаний, которые позволили бы за короткое время выявить максимальное число дефектных изделий в испытываемой партии, за счет чего надежность партии повысится. Контроль электрических параметров при комнатной температуре после проведения ЭТТ позволяет отбраковать изделия с катастрофическими и параметрическими дефектами.

К недостаткам способа относится то, что время контроля электрических параметров после проведения ЭТТ не регламентировано.

Наиболее близким аналогом является способ проведения ЭТТ [4], определяющей, что все промежуточные и заключительные измерения электропараметров должны быть закончены не позднее чем 24 ч после того, как изделия сняты со стенда.

К недостаткам способа относится то, что время контроля электрических параметров после проведения ЭТТ, ограниченное 24 часами, ничем не аргументировано и может быть более 48 часов, что может привести к пропуску потенциально ненадежного ППИ.

Анализ отказавших ППИ при ЭТТ показал, что процент катастрофических отказов в различных партиях был практически одинаков, а процент параметрических отказов в партиях изделий, контроль электрических параметров у которых проводился спустя многих часов после снятия со стендов ЭТТ, был значительно ниже.

Во всех реальных случаях поверхность ППИ, подвергнутая механической, химической и электрохимической обработке, оказывается покрытой оксидным слоем, имеющим сложный химический состав. Этот слой содержит примесные атомы металлов, имеющихся в травителе, а также молекулы воды, кислорода, ионы гидроксильной группы и др. [5]. Толщина оксидного слоя для германия и кремния невелика и обычно лежит в пределах 10-60 Å.

Возникновение поверхностных состояний и заполнение их электронами и дырками приводит к появлению неподвижного объемного заряда у поверхности и вызывает искривление энергетических зон в ту или иную сторону. Для германия и кремния поверхностные состояния подразделяются на быстрые и медленные. Для быстрых состояний характерно малое время рекомбинации, для медленных - достаточно большое время рекомбинации.

При длительном электрическом воздействии и воздействии повышенной температуры происходит возбуждение поверхностных состояний, за счет чего электрические параметры изделий ухудшаются. При измерении электрических параметров сразу после ЭТТ изделия с параметрическими отказами отбраковываются. Если же измерять электрические параметры изделий, прошедших ЭТТ, после 24-48 часов, то медленные поверхностные состояния рекомбинируют и электрические параметры ряда изделий приходят в нормы технических условий. И это в первую очередь относится к изделиям, имеющим нормы электрических параметров, близкие к граничным значениям по техническим условиям (ТУ).

Изобретение направлено на более достоверную отбраковку потенциально ненадежных ППИ после проведения на них ЭТТ. Это достигается тем, что проверку электрических параметров партии начинают сразу же после изъятия из стендов ЭТТ и проводят в течение не позже 8 часов, т.е. в одну рабочую смену, а нормы на электрические параметры ужесточаются относительно норм, указанных в ТУ, на 2способ повышения надежности партий полупроводниковых изделий, патент № 2326394 , где способ повышения надежности партий полупроводниковых изделий, патент № 2326394 - погрешность измерения.

Способ реализуется следующим образом. Партию ППИ загружают в камеру стенда ЭТТ, устанавливают необходимый по технологической карте электрический режим на каждое изделие и температурный режим в объеме камеры. В течение указанного в технологической карте времени контролируется стабильность электрического и температурного режима, после чего стенд отключается. Открывают дверцу камеры, разгружают платы с установленными в гнездах изделиями, а затем из каждой извлекается изделие. После этого изделия проверяются по электрическим параметрам при комнатной температуре. Так как партия может быть, как правило, объемом до 1000 штук, то полное время проверки электрических параметров у изделий всей партии практически составляло 8 часов, то есть одну рабочую смену.

Проверка эффективности предлагаемого способа была проведена на 991 схеме типа КР1005ВИ1. После проведения ЭТТ в течение 72 часов при температуре 55°С были замерены электрические параметры сразу (практически измерение схем всей партии заняло 6 часов). Отбраковано 11 схем. Перепроверка электрических параметров этих схем через 24 часа показала, что 4 схемы соответствуют требованиям технических условий, т.е. стали годными, а после перепроверки через 48 часов добавилось еще 2 схемы, т.е. всего 6 схем, имевших изменение электрических параметров, близких к нормам ТУ, стало годными, но потенциально ненадежными при эксплуатации.

Источники информации

1. Горлов М.И., Коваленко П.Ю. Технологические тренировки интегральных схем. // Микроэлектроника, 2000, том 29, №5, с.395-400

2. ГОСТ В 28146-89. Приборы полупроводниковые. Общие технические условия.

3. ГОСТ 18725-83. Микросхемы интегральные. Общие технические условия.

4. MIL-STD-883. Test method and procedures for microelectronics. 1997 г.

5. Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Микроэлектроника. Физические и технологические основы, надежность. М.: Высшая школа. 1986, с.64.

Класс G01R31/26 испытание отдельных полупроводниковых приборов

способ разделения интегральных схем "по надежности" -  патент 2529675 (27.09.2014)
способ измерения шума узлов мфпу -  патент 2521150 (27.06.2014)
способ определения теплового сопротивления переход-корпус транзисторов с полевым управлением -  патент 2516609 (20.05.2014)
способ разделения полупроводниковых изделий по надежности -  патент 2515372 (10.05.2014)
способ отбраковки полупроводниковых изделий пониженного уровня качества из партий изделий повышенной надежности -  патент 2511633 (10.04.2014)
способ сравнительной оценки надежности партий полупроводниковых изделий -  патент 2511617 (10.04.2014)
устройство для измерения полного сопротивления и шумовых параметров двухполюсника на свч -  патент 2510035 (20.03.2014)
способ измерения теплового импеданса полупроводниковых диодов с использованием полигармонической модуляции греющей мощности -  патент 2507526 (20.02.2014)
способ разделения транзисторов по надежности -  патент 2507525 (20.02.2014)
способ контроля внутреннего квантового выхода полупроводниковых светодиодных гетероструктур на основе gan -  патент 2503024 (27.12.2013)
Наверх