способ переработки нефти

Классы МПК:C10G11/00 Каталитический крекинг углеводородных масел в отсутствие водорода
C10G47/00 Крекинг углеводородных масел в присутствии водорода или соединений, выделяющих водород, для получения более низкокипящих фракций
C10G65/12 включая ступени крекинга и другие ступени гидрообработки
Автор(ы):, , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (RU),
Открытое акционерное общество "Научно-исследовательский и проектный институт нефтеперерабатывающей и нефтехимической промышленности" (RU)
Приоритеты:
подача заявки:
2007-01-18
публикация патента:

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при получении моторных топлив. Способ включает атмосферную перегонку исходной нефти с получением топливных фракций и мазута, вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллата и гудрона, коксование гудрона с последующим разделением продуктов коксования на бензиновую фракцию, легкую и тяжелую газойлевые фракции коксования и кокс. Тяжелую газойлевую фракцию коксования разделяют на два потока, один из которых в смеси с легкой газойлевой фракцией коксования и прямогонным вакуумным дистиллатом направляют на гидрокрекинг, а второй поток предварительно подвергают гидроочистке и затем направляют на каталитический крекинг в смеси с остатком гидрокрекинга, причем эти потоки разделяют в соотношении 35-80 мас.% и 20-65 мас.%. Технический результат - повышение глубины переработки нефти с выработкой дополнительного количества высокооктановых компонентов автомобильного бензина и дизельного топлива, соответствующих современным требованиям. 1 з.п.ф-лы.

Формула изобретения

1. Способ переработки нефти, включающий атмосферную перегонку исходной нефти с получением топливных фракций и мазута, вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллата и гудрона, коксование гудрона с последующим разделением продуктов коксования на бензиновую фракцию, легкую и тяжелую газойлевые фракции коксования и кокс, гидрокрекинг смеси прямогонного вакуумного дистиллата и тяжелой газойлевой фракции коксования с последующим разделением продуктов гидрокрекинга на газ, бензиновую фракцию, газойлевые фракции и остаток, отличающийся тем, что тяжелую газойлевую фракцию коксования разделяют на два потока, один из которых в смеси с легкой газойлевой фракцией коксования и прямогонным вакуумным дистиллатом направляют на гидрокрекинг, а второй поток предварительно подвергают гидроочистке и затем направляют на каталитический крекинг в смеси с остатком гидрокрекинга.

2. Способ по п.1, отличающийся тем, что тяжелую газойлевую фракцию коксования разделяют на два потока в соотношении 35-80 мас.% и 20-65 мас.%.

Описание изобретения к патенту

Изобретение относится к области нефтеререработки, конкретно к способу переработки нефти с получением моторных топлив.

Важной задачей на современном этапе развития нефтяной отрасли является повышение глубины переработки нефти за счет процессов деструктивной переработки нефтяных остатков с получением ценных топлив и других нефтяных продуктов. К таким деструктивным процессам относятся термические, каталитические и гидрогенизационные технологии переработки вакуумных дистиллатов, мазутов, гудронов.

Известен способ переработки нефти, заключающийся в ее перегонке с выделением вакуумного дистиллата и гудрона и последующем коксовании полученного гудрона. Для получения дополнительного количества светлых нефтепродуктов газойлевые фракции коксования смешивают с вакуумным дистиллатом и подвергают их совместной гидроочистке, а затем каталитическому крекингу. Способ позволяет получить около 50 мас.% компонента автомобильного бензина и 15-20 мас.% легкого газойля (дизельный дистиллат). (Э.Ф.Каминский, В.А.Хавкин. Глубокая переработка нефти: технологический и экологический аспекты, М., 2001, с.334).

К недостаткам способа следует отнести невозможность увеличения выхода дизельного дистиллата свыше 20 мас.% на сырье каталитического крекинга, а также низкое качество этого дистиллата (по содержанию серы, цетановому числу и др.), что не позволяет вырабатывать дизельное топливо в соответствии с современными стандартами (ГОСТ Р 52368-2005).

Наиболее близким к заявляемому является способ переработки нефти, заключающийся в атмосферной перегонке исходной нефти с выделением топливных фракций и остатка (мазута), который направляют на вакуумную установку с выделением прямогонного вакуумного дистиллата и гудрона. Гудрон направляют на установку коксования, с которой выводят бензиновую фракцию, фракцию легкого газойля коксования и кокс, а фракцию тяжелого газойля коксования в смеси с прямогонным вакуумным дистиллатом подвергают гидрокрекингу при высоком давлении водорода. С установки гидрокрекинга выводят газ, бензиновую фракцию, газойлевые фракции и остаток (малосернистый мазут). Особенностью способа является то, что соотношение между компонентами сырья гидрокрекинга: прямогонным вакуумным дистиллатом и фракцией тяжелого газойля коксования составляет 5 об.:1 об. (Проспект фирмы Эксон-Мобил «Переработка нефтяных остатков», М., 2004).

Недостатками способа являются следующие:

1. Низкое качество бензиновых фракций процессов гидрокрекинга и коксования (эти фракции являются низкооктановыми).

2. Низкое качество газойлевых фракций коксования (высокое содержание серы, низкое цетановое число), не позволяющее использовать их непосредственно как компоненты товарного дизельного топлива.

Задачей предлагаемого изобретения является разработка способа переработки нефти, позволяющего вырабатывать дополнительные количества высококачественных моторных топлив (дизельного топлива и компонентов автомобильного бензина), соответствующих современным требованиям, используя повышение глубины переработки нефти.

Для решения поставленной задачи предлагается способ переработки нефти, включающий атмосферную перегонку исходной нефти с получением топливных фракций и мазута, вакуумную перегонку мазута с выделением прямогонного вакуумного дистиллата и гудрона, коксование гудрона с последующим разделением продуктов коксования на бензиновую фракцию, легкую и тяжелую газойлевые фракции коксования и кокс, гидрокрекинг смеси прямогонного вакуумного дистиллата и тяжелой газойлевой фракции коксования с последующим разделением продуктов гидрокрекинга на газ, бензиновую фракцию, газойлевые фракции и остаток. Способ отличается тем, что тяжелую газойлевую фракцию коксования разделяют на два потока, один из которых в смеси с легкой газойлевой фракцией коксования и прямогонным вакуумным дистиллатом направляют на гидрокрекинг, а второй поток предварительно подвергают гидроочистке и затем направляют на каталитический крекинг в смеси с остатком гидрокрекинга, причем эти потоки разделяют в соотношении 35-80 мас.% и 20-65 мас.%.

В заявляемом способе могут быть использованы различные виды коксования гудрона, преимущественно замедленное коксование.

Заявленный способ позволяет вырабатывать дополнительные количества высококачественных моторных топлив, соответствующих современным требованиям, за счет повышения глубины переработки нефти при использовании процессов гидрокрекинга и каталитического крекинга, причем в качестве сырья этих процессов используют определенные потоки, выделенные при реализации способа, в заявленном соотношении, позволяющие максимально повысить выход светлых нефтепродуктов. Так, в процессе гидрокрекинга в качестве сырья используют часть тяжелой газойлевой фракции коксования (от 35 до 80 мас.%), легкую газойлевую фракцию коксования и прямогонный вакуумный дистиллат, полученный в результате вакуумной перегонки мазута, а в процессе каталитического крекинга - оставшуюся часть (от 65 до 20 мас.%) тяжелой газойлевой фракции коксования, которую предварительно подвергают гидроочистке, и остаток, полученный в результате разделения продуктов гидрокрекинга (>350°С).

Способ иллюстрируется следующими примерами.

Пример 1.

Атмосферной перегонке подвергают тяжелую сернистую нефть с выделением топливных фракций (бензиновой и дизельной) с выходом 35 мас.% на нефть и мазута, который подвергают вакуумной перегонке с выделением вакуумного дистиллата - фракции 350-540°С (38 мас.% на нефть) и гудрона (остаток >540°С с выходом 27 мас.% на нефть). Указанный гудрон (плотность 1025 кг/м3, коксуемость по Конрадсону 21 мас.%, содержание: серы - 4,5 мас.%, ванадия - 0,011 мас.%, никеля - 0,004 мас.%, железа - 0,0049 мас.%) направляют на установку замедленного коксования, проводимого при температуре 500°С. В результате процесса коксования получают (мас.% на сырье коксования):

Углеводородный газ + фракция С 567,9
Бензиновая фракция (30-180°С) 12,6
Легкая газойлевая фракция (180-350°С)25,0
Тяжелая газойлевая фракция (350-540°С) 25,8
Кокс 28,7

Тяжелую газойлевую фракцию коксования разделяют на два потока в соотношении соответственно 35 и 65 мас.%. Первый поток (35 мас.%) тяжелой газойлевой фракции коксования смешивают с легкой газойлевой фракцией коксования и с прямогонным вакуумным дистиллатом.

Качество вакуумного дистиллата (фракции 350-540°С): плотность - 930 кг/м3, коксуемость по Конрадсону - 0,25 мас.%, содержание серы - 2,6 мас.%, ванадия 0,0003 мас.%, никеля - 0,0002 мас.%.

Указанную сырьевую смесь подвергают гидрокрекингу при следующих условиях: давление - 15 МПа, температура - 400°С, объемная скорость подачи сырья 0,7 час-1, соотношение водородсодержащий газ/сырье 1500 н.об./об. В результате получают следующий выход продуктов, мас.%:

Углеводородный газ + сероводород 10,2
Бензиновая фракция (30-180°С) 13,8
Дизельный фракция (180-350°С)42,3
Остаток (>350°С)33,7

Дизельный фракция характеризуется содержанием серы менее 0,001 мас.%, цетановым числом - 51-52 и по остальным показателям также соответствует требованиям ГОСТ Р 52368-2005 (EH 590:2004).

Остаток (>350°С) от стадии гидрокрекинга, содержащий менее 0,05 мас.% серы и менее 0,0001 мас.% суммарно никеля и ванадия, направляют на стадию каталитического крекинга, где указанный продукт перерабатывают в смеси со вторым потоком (65 мас.%) тяжелой газойлевой фракции коксования, которую предварительно подвергают гидроочистке. Качество тяжелой газойлевой фракции после гидроочистки: содержание серы - менее 0,1 мас.%, суммарное содержание никеля и ванадия - менее 0,0001 мас.%.

В результате осуществления процесса каталитического крекинга получают следующий выход продуктов, мас.%:

Фракция С1 2 + сероводород1,06
Фракция С34 15,4
Фракция С 5-205°С (бензиновая фракция)53,2
Фракция 205-350°С (фракция легкого газойля)15,4
Фракция >350°С (фракция тяжелого газойля) 13,3
Кокс1,45

Процесс каталитического крекинга проводят при температуре 500°С. Полученная фракция углеводородов С34 содержит в своем составе пропилены и бутилены и является ценным нефтехимическим сырьем. Фракция С5-205°С (бензиновая фракция) характеризуется октановым числом 82/93,5 (М.М./И.М.) и используется как компонент товарного автобензина.

Пример 2.

Атмосферной перегонке подвергают тяжелую сернистую нефть с выделением топливных фракций (бензиновой и дизельной) с выходом 48 мас.% на нефть и мазута, который подвергают вакуумной перегонке с выделением вакуумного дистиллата - фракции 350-560°С (27 мас.% на нефть) и гудрона (остаток >560°С с выходом 25 мас.% на нефть). Указанный гудрон (плотность 1011 кг/м 3, коксуемость по Конрадсону 18 мас.%, содержание: серы - 4,1 мас.%, ванадия - 0,009 мас.%, никеля - 0,003 мас.%, железа - 0,003 мас.%) направляют на установку замедленного коксования, проводимого при температуре 510°С. В результате процесса коксования получают (мас.% на сырье коксования):

Углеводородный газ + фракция C 568,2
Бензиновая фракция (30-180°С) 15,8
Легкая газойлевая фракция (180-350°С)29,0
Тяжелая газойлевая фракция (350-560°С) 21,0
Кокс 26,0

Тяжелую газойлевую фракцию коксования разделяют на два потока в соотношении соответственно 80 и 20 мас.%. Первый поток (80 мас.%) тяжелой газойлевой фракции коксования смешивают с легкой газойлевой фракцией коксования и с прямогонным вакуумным дистиллатом.

Качество вакуумного дистиллата (фракции 350-560°С): плотность - 918 кг/м3, коксуемость по Конрадсону - 0,2 мас.%, содержание серы - 1,8 мас.%, ванадия 0,00025 мас.%, никеля - 0,00015 мас.%.

Указанную сырьевую смесь подвергают гидрокрекингу при следующих условиях: давление - 13 МПа, температура - 390°С, объемная скорость подачи сырья 1,0 час-1, соотношение водородсодержащий газ/сырье 1200 н.об./об. В результате получают следующий выход продуктов, мас.%:

Углеводородный газ + сероводород 8,9
Бензиновая фракция (30-180°С) 12,8
Дизельный фракция (180-350°С)42,3
Остаток (>350°С)31,0

Дизельный фракция характеризуется содержанием серы менее 0,001 мас.%, цетановым числом - 53 и по остальным показателям также соответствует требованиям ГОСТ Р 52368-2005 (EH 590:2004).

Остаток (>350°С) от стадии гидрокрекинга, содержащий менее 0,05 мас.% серы и менее 0,0001 мас.% суммарно никеля и ванадия, направляют на стадию каталитического крекинга, где указанный продукт перерабатывают в смеси со вторым потоком (20 мас.%) тяжелой газойлевой фракции коксования, которую предварительно подвергают гидроочистке. Качество тяжелой газойлевой фракции после гидроочистки: содержание серы - менее 0,15 мас.%, суммарное содержание никеля и ванадия - менее 0,0001 мас.%.

В результате осуществления процесса каталитического крекинга получают следующий выход продуктов, мас.%:

Фракция С1-C 2 + сероводород1,1
Фракция С34 14,7
Фракция С 5-205°С (бензиновая фракция)51,0
Фракция 205-350°С (фракция легкого газойля)17,0
Фракция >350°С (фракция тяжелого газойля) 15,0
Кокс1,2

Процесс каталитического крекинга проводят при температуре 495°С.

Полученная фракция углеводородов С34 содержит в своем составе пропилены и бутилены и является ценным нефтехимическим сырьем. Фракция С5-205°С (бензиновая фракция) характеризуется октановым числом 82,5/94 (М.М./И.М.) и используется как компонент товарного автобензина.

Пример 3.

Атмосферной перегонке подвергают тяжелую сернистую нефть с выделением топливных фракций (бензиновой и дизельной) с выходом 40 мас.% на нефть и мазута, который подвергают вакуумной перегонке с выделением вакуумного дистиллата - фракции 350-550°С (37 мас.% на нефть) и гудрона (остаток >550°С с выходом 23 мас.% на нефть). Указанный гудрон (плотность 1030 кг/м 3, коксуемость по Конрадсону 22 мас.%, содержание: серы - 4,7 мас.%, ванадия - 0,012 мас.%, никеля - 0,005 мас.%, железа - 0,005 мас.%) направляют на установку замедленного коксования, проводимого при температуре 500°С. В результате процесса коксования получают (мас.% на сырье коксования):

Углеводородный газ + фракция С 568,2
Бензиновая фракция (30-180°С) 12,8
Легкая газойлевая фракция (180-350°С)30,0
Тяжелая газойлевая фракция (350-540°С) 25,0
Кокс 24,0

Тяжелую газойлевую фракцию коксования разделяют на два потока в соотношении соответственно 50 и 50 мас.%. Первый поток (50 мас.%) тяжелой газойлевой фракции коксования, смешивают с легкой газойлевой фракцией коксования и с прямогонным вакуумным дистиллатом.

Качество вакуумного дистиллата (фракции 350-550°С): плотность - 935 кг/м3, коксуемость по Конрадсону - 0,26 мас.%, содержание серы - 2,8 мас.%, ванадия 0,0004 мас.%, никеля -0,0003 мас.%.

Указанную сырьевую смесь подвергают гидрокрекингу при следующих условиях: давление - 17 МПа, температура - 410°С, объемная скорость подачи сырья 1,2 час-1, соотношение водородсодержащий газ/сырье 1500 н.об./об. В результате получают следующий выход продуктов, мас.%:

Углеводородный газ + сероводород 10,5
Бензиновая фракция (30-180°С) 12,0
Дизельный фракция (180-350°С)42,0
Остаток (>350°С)35,5

Дизельный фракция характеризуется содержанием серы менее 0,001 мас.%, цетановым числом - 51-52 и по остальным показателям также соответствует требованиям ГОСТ Р 52368-2005 (EH 590:2004).

Остаток (>350°С) от стадии гидрокрекинга, содержащий менее 0,05 мас.% серы и менее 0,0001 мас.% суммарно никеля и ванадия, направляют на стадию каталитического крекинга, где указанный продукт перерабатывают в смеси со вторым потоком (50 мас.%) тяжелой газойлевой фракции коксования, которую предварительно подвергают гидроочистке. Качество тяжелой газойлевой фракции после гидроочистки: содержание серы - менее 0,20 мас.%, суммарное содержание никеля и ванадия - менее 0,0001 мас.%.

В результате осуществления процесса каталитического крекинга получают следующий выход продуктов, мас.%:

Фракция С1 2 + сероводород1,1
Фракция С34 14,1
Фракция С 5-205°С (бензиновая фракция)50,1
Фракция 205-350°С (фракция легкого газойля)19,0
Фракция >350°С (фракция тяжелого газойля) 14,1
Кокс1,6

Процесс каталитического крекинга проводят при температуре 500°С. Полученная фракция углеводородов С34 содержит в своем составе пропилены и бутилены и является ценным нефтехимическим сырьем. Фракция С5-205°С (бензиновая фракция) характеризуется октановым числом 82,5/93 (М.М./И.М.) и используется как компонент товарного автобензина.

Таким образом, предлагаемый способ переработки нефти позволяет вырабатывать дополнительные количества дизельного топлива, соответствующего современным требованиям ГОСТ Р 52368-2005 (ЕВ 590:2004), и высокооктановых компонентов автомобильного бензина за счет повышения глубины переработки нефти при максимальном и рациональном использовании нефтяных остатков в процессах гидрокрекинга и каталитического крекинга.

Класс C10G11/00 Каталитический крекинг углеводородных масел в отсутствие водорода

установка каталитического крекинга с псевдоожиженным слоем -  патент 2527973 (10.09.2014)
способ увеличения молекулярного веса олефинов и установка для его осуществления -  патент 2525113 (10.08.2014)
способ совместной переработки нефтяных фракций и полимерных отходов -  патент 2522615 (20.07.2014)
способ крекинга биосырья с использованием катализаторов с высоким отношением площади поверхности цеолита к площади поверхности матрицы -  патент 2522432 (10.07.2014)
объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ превращения углеводородов на твердом катализаторе с использованием составных реакторов с движущимся слоем -  патент 2516698 (20.05.2014)
устройство и способ для смешивания регенерированного катализатора с науглероженным -  патент 2510966 (10.04.2014)
энергосбережение при дистилляции тяжелых углеводородов -  патент 2507188 (20.02.2014)
способ предотвращения коксообразования, катализируемого металлом -  патент 2505584 (27.01.2014)

Класс C10G47/00 Крекинг углеводородных масел в присутствии водорода или соединений, выделяющих водород, для получения более низкокипящих фракций

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ комплексной переработки нефти и установка для его осуществления -  патент 2527281 (27.08.2014)
устройство и способ распределения паровой и жидкой фаз -  патент 2526984 (27.08.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
цеолитсодержащий катализатор депарафинизации масляных фракций -  патент 2518468 (10.06.2014)
способ и устройство для получения углеводородного топлива и композиции -  патент 2517186 (27.05.2014)
модифицированные цеолиты y с тримодальной внутрикристаллической структурой, способ их получения и их применение -  патент 2510293 (27.03.2014)
способ гидрокрекинга с использованием реакторов периодического действия и сырья, содержащего 200 м.д.масс.-2% масс. асфальтенов -  патент 2509798 (20.03.2014)
способ и установка для отделения пека от подвергнутого гидрокрекингу в суспензионной фазе вакуумного газойля и его состав -  патент 2504575 (20.01.2014)
способ уменьшения вязкости мазута -  патент 2502787 (27.12.2013)

Класс C10G65/12 включая ступени крекинга и другие ступени гидрообработки

способ получения базового состава смазочного масла -  патент 2528977 (20.09.2014)
способ гидрокрекинга с использованием реакторов периодического действия и сырья, содержащего 200 м.д.масс.-2% масс. асфальтенов -  патент 2509798 (20.03.2014)
способ гидрокрекинга -  патент 2470989 (27.12.2012)
способ гидроизомеризации -  патент 2469072 (10.12.2012)
способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом тяжелой фракции, выделяемой из смеси, получаемой синтезом фишера-тропша -  патент 2469069 (10.12.2012)
способ получения высокооктанового компонента моторного топлива -  патент 2451058 (20.05.2012)
способ и установка для конверсии тяжелых нефтяных фракций в кипящем слое интегрированным получением средних дистиллятов с очень низким содержанием серы -  патент 2430957 (10.10.2011)
способ гидрогенизационной переработки вакуумного дистиллата -  патент 2430144 (27.09.2011)
способ гидрокрекинга парафина -  патент 2428458 (10.09.2011)
способ и устройство для гидрообработки и гидрокрекинга -  патент 2427610 (27.08.2011)
Наверх