способ получения объемного теллурида цинка-кадмия холодным прессованием

Классы МПК:C30B28/02 непосредственно из твердого состояния
C30B29/48 соединения типа AIIBVI
B01J3/00 Способы, используемые при работе с пониженным или повышенным давлением и вызывающие химическую или физическую модификацию веществ; устройства для этой цели
Автор(ы):, , , , ,
Патентообладатель(и):ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (RU)
Приоритеты:
подача заявки:
2006-06-13
публикация патента:

Изобретение относится к области изготовления полупроводниковых приборов и может использоваться для получения объемного материала с высокой механической твердостью. Сущность изобретения состоит в том, что нанопорошок теллурида цинка-кадмия со средним размером частиц 10 нм загружают в пресс-форму и помещают в камеру пресса. Образец нагружают до давления 350-500 МПа при температурах от +20 до +25°С, а затем выдерживают под давлением в течение 1-10 мин. При этом получают материал, твердость которого составляет 1010-1860 МПа, что превышает твердость полученных известными способами кристаллов теллурида цинка-кадмия не менее чем в 2 раза. 2 табл.

Формула изобретения

Способ получения объемного теллурида цинка-кадмия прессованием, отличающийся тем, что прессованию подвергают нанокристаллический порошок теллурида цинка-кадмия с размером частиц 10 нм при температуре от +20 до +25°С на воздухе при давлении прессования 350-500 МПа в течение 1-10 мин.

Описание изобретения к патенту

Изобретение относится к области изготовления полупроводниковых приборов на основе теллурида цинка-кадмия и может использоваться для получения объемного материала высокой плотности и механической твердости, изготавливаемого из нанопорошка для заготовок и изделий, в частности детекторов ионизирующих излучений.

Механическая твердость является эксплуатационной характеристикой материалов, работающих в области физики высоких энергий. Это свойство важно при создании полупроводниковых приборов, а именно при закреплении изделий в обоймы (оправки) и при нанесении контактов. У Cd 1-xZnxTe, полученного известными способами, твердость низкая - на уровне 450 МПа.

Известен способ получения объемного кристаллического теллурида цинка-кадмия выращиванием из расплава в атмосфере аргона [Н.J. von Bardeleben, T.Arnoux, С.Launay. intrinsic Defects in Photorefractive Buil CdTe and ZnCdTe. Journal of Crystal Growth, 1999, v.197, pp.718-723] - аналог. Этот метод позволяет получить монокристаллы, механическая твердость которых невысока: микротвердость по Виккерсу (измеренная на приборе ПМТ-3 с использованием алмазной пирамиды с углом 136° при вершине) составляет 450 МПа.

Известен способ выращивания объемных кристаллов теллурида цинка-кадмия из расплава в условиях контролируемых парциальных давлениий паров компонентов над расплавом [Wanwan Li, Wenbin Sang, Jihna Min, Fang Yu, Bin Zhang and Kunsu Wang. Cd1-xZnxTe Crystal Growth Controlied by Cd/Zn Partia) Pressures. Semiconductor Science and Technology, 2002, v.17, p.L55-L58] - аналог. Этот способ получения теллурида цинка-кадмия имеет тот же недостаток, а именно низкую микротвердость на уровне 450 МПа.

Помимо указанного недостатка перечисленные способы получения объемных кристаллов Cd1-xZnx Te не обеспечивают получения постоянного химического состава по всей длине кристалла в связи с различием коэффициентов диффузии компонентов в паровой фазе. Прилагаемые давления атмосферы инертного газа либо контроль давления паров компонентов позволяют лишь частично устранить этот недостаток.

Наиболее близким по технической сущности к предлагаемому является способ получения селенида цинка [Ch.В.Willingham, J.Pappis. Optical Element, Especialy of Zinc Sulphide or Selenide, Having improved Optical Quality. UK Patent Application No GB 2090237 A, 1982] - прототип. Способ включает горячее изостатическое прессование при температурах в диапазоне 700-1050°С и давлениях 34-205 МПа кристаллов ZnSe, полученных методом химического осаждения из газовой фазы. Сравнение способов получения теллурида цинка-кадмия и селенида цинка оправдано, поскольку оба они относятся к ряду соединений АIIВVI, и их физико-химические свойства весьма близки между собой [N.N.Kolesnikov, R.В.James, N.S.Berzigiarova, М.P.Kulakov. HPVB and HPVZM Shaped Growth of CdZnTe, CdSe and ZnSe Crystals. Proceedings of SPIE: X-Ray and Gamma-Ray Detectors and Applications IV, Editors: R.B.James, L.A.Frank, A.Burger, E.M.Westbrook, R.D.Durst. 2002, v.4784, pp.93-104]. Микротвердость ZnSe составляет 720 МПа. Горячее изостатическое прессование повышает плотность материала и частично предотвращает образование пор, тем самым позволяя улучшить некоторые оптические характеристики, например пропускание света в инфракрасном диапазоне. К недостаткам этого способа относится высокая стоимость изготовления и эксплуатации высокотемпературных газостатов. Кроме того, соединения АIIВVI, к которым относятся теллурид цинка-кадмия и ZnSe, частично разлагаются на компоненты при температурах 300°С и выше, что вызывает нарушение стехиометрии этих веществ. Поэтому прессование таких материалов при высоких температурах нежелательно, т.к. контроль химического состава усложняет процесс и повышает стоимость получения материала. Прессование соединений АIIВ VI на воздухе при температурах 300°С и выше невозможно, т.к. эти вещества в таких условиях окисляются кислородом воздуха. Кроме того, изостатическое прессование материалов А IIВVI ведется в течение 3 часов и более, что также повышает стоимость и снижает производительность процесса. Помимо этого, при обработке материалов давлением при повышенных температурах могут происходить процессы динамического отдыха и рекристаллизации, что приводит к снижению механической твердости за счет роста зерен и уменьшения внутренних напряжений.

Таким образом, известные способы получения кристаллов типа АIIВVI не позволяют получать объемный теллурид цинка-кадмия с высокой механической твердостью и постоянным стехиометрическим составом.

Поскольку теллурид цинка-кадмия предназначен, в частности, для использования в детекторах ионизирующих излучений, одной из его рабочих характеристик является механическая твердость, высокие значения которой важны при нанесении контактов и при закреплении изделий в обоймы (оправки), и постоянный химический состав, обеспечивающий стабильность свойств данного материала.

Задачей данного изобретения является получение объемного теллурида цинка-кадмия, обладающего высокой механической твердостью и заданным составом.

Эта задача решается в предлагаемом способе получения объемного теллурида цинка-кадмия прессованием полученного методом осаждения из газовой фазы нано-кристаллического порошка с размерами частиц 10 нм при температурах от +20 до +25°С на воздухе, при давлении прессования 350-500 МПа в течение 1-10 минут.

Выбор размера частиц обусловлен достижением высоких показателей твердости. При прессовании порошка с размером зерен 300 нм твердость существенно ниже, чем в случае прессования нанопорошка (строка 1 таблицы 1).

Интервал давлений, при которых происходит прессование, оптимален для достижения высоких показателей твердости теллурида цинка-кадмия. При давлениях ниже 350 МПа твердость ниже, чем в указанном интервале (строка 2 таблицы 1), а при еще более низких давлениях материал не удается спрессовать. При давлениях 350-500 МПа и выдержке под давлением в течение 1-10 мин. достигается максимальная для данного состава твердость (строки 3, 4, 5 таблицы 1) При давлении выше 500 МПа твердость остается на том же уровне (строка 6 таблицы 1).

Выбор комнатной температуры прессования обусловлен тем, что при повышенных температурах может происходить диссоциация соединения Cd1-xZnx Te, приводящая к изменению состава материала и, следовательно, его свойств. Прессование при комнатной температуре позволяет сохранить постоянным состав керамики, эквивалентный составу исходного порошка. Кроме того, при повышенных температурах возможны процессы динамического отдыха и рекристаллизации, что приводит к снижению механической твердости за счет роста зерен (строка 7 таблицы 1). Помимо этого, горячее прессование требует дополнительных затрат на оборудование. Таким образом, изготовление керамики из нанопорошка теллурида цинка-кадмия при высоких температурах нецелесообразно.

Прессование ведется в пресс-форме с применением одного пуансона. При этом в данном способе прессования не используются пластификаторы и смазки. Такой процесс является простым и экономичным, кроме того, отсутствие пластификаторов и смазки предотвращает загрязнение полученного материала инородными примесями.

Выбор интервала времени прессования является оптимальным для достижения высокой твердости материала. При времени, меньшем 1 мин, не достигается однородности структуры и свойств теллурида кадмия по сечению и объему образца материала. При увеличении времени выдержки свыше 10 мин (строка 8 таблицы 1) не наблюдается дальнейшего повышения твердости, а при увеличении времени выдержки под давлением свыше 30 мин материал стремится к расслоению (строка 9 таблицы 1).

Различие химического состава керамики теллурида цинка-кадмия оказывает влияние на значение твердости (строки 10, 11, 12 таблицы 1).

Таблица 1
NСостав керамикиДавление прессования, МПаВремя прессования, мин Т °СДиаметр частиц кадмий-цинк-теллур, нмТвердость материала, МПа
1Cd 0.9Zn0.1Te450 5+20 300660
2 Cd0.9Zn 0.1Te3005 +2010 830
3Cd 0.9Zn0.1Te350 10+20 101136
4 Cd0.9Zn 0.1Te4502 +2510 1130
5Cd 0.9Zn0.1Te500 1+25 101140
6 Cd0.9Zn 0.1Te6005 +2010 1140
7Cd 0.9Zn0.1Te450 5+200 60806
8 Cd0.9Zn 0.1Te45020 +2010 1030
9Cd 0.9Zn0.1Te400 40+20 10расслоение
10Cd0.8Zn 0.2Te40010 +2510 1536
11Cd 0.7Zn0.3Te400 5+20 101751
12 Cd0.96Zn 0.04Te4005 +2010 1008

Предложенный способ позволяет получить объемный теллурид цинка-кадмия заданного состава Cd 1-xZnxTe, плотность которого составляет 94-95% рентгеновской плотности CdTe. Микротвердость по Виккерсу полученного таким способом объемного теллурида цинка-кадмия изменяется в пределах 1108-1751 МПа, в зависимости от состава керамики (строки 3, 4, 5, 6, 9, 10, 11 таблицы 1). Это в 1,5-2 раза превышает микротвердость кристаллов, изготовленных известными способами (таблица 2).

Таблица 2
Состав кристалла или керамикиМикротвердость кристалла, выращенного из расплава, МПаМикротвердость керамики из нанопорошка, МПа
Cd 0.96Zn0.04Те630 1008
Cd 0.9Zn0.1Те710 1136
Cd 0.8Zn0.2Те967 1536
Cd 0.7Zn0.3Те1251 1751
Cd 0.6Zn0.4Те1330 1852

Пример 1

Нанопорошок теллурида цинка-кадмия Cd0.96Zn 0.04Те со средним размером частиц 10 нм был загружен в пресс-форму диаметром 10 мм и помещен в камеру пресса. Образец нагружали до давления 400 МПа, а затем выдерживали под давлением в течение 5 мин при температуре +20°С на воздухе. После снятия нагрузки полученный образец диаметром 10 мм и высотой 3 мм извлекали и измеряли его микротвердость на приборе ПМТ-3 с использованием алмазной пирамиды с углом 136° при вершине. Микротвердость составляла 1130 МПа. Значение микротвердости по сечению было постоянным, что указывает на однородность микроструктуры образцов. Точность измерения микротвердости была не хуже ±5%.

Пример 2

Нанопорошок теллурида цинка-кадмия Cd 0.8Zn0.2Те со средним размером частиц 10 нм был загружен в пресс-форму диаметром 10 мм и помещен в камеру пресса. Образец нагружали до давления 350 МПа, а затем выдерживали под давлением в течение 10 мин при температуре +20°С на воздухе. После снятия нагрузки полученный образец диаметром 10 мм и высотой 3 мм извлекали и измеряли его микротвердость на приборе ПМТ-3 с использованием алмазной пирамиды с углом 136° при вершине. Микротвердость составляла 1536 МПа. Значение микротвердости по сечению было постоянным, что указывает на однородность микроструктуры образцов. Точность измерения микротвердости была не хуже ±5%.

Пример 3

Нанопорошок теллурида цинка-кадмия Cd 0.6Zn0.4Те со средним размером частиц 10 нм был загружен в пресс-форму диаметром 10 мм и помещен в камеру пресса. Образец нагружали до давления 500 МПа, а затем выдерживали под давлением в течение 2 мин при температуре +25°С на воздухе. После снятия нагрузки полученный образец диаметром 10 мм и высотой 3 мм извлекали и измеряли его микротвердость на приборе ПМТ-3 с использованием алмазной пирамиды с углом 136° при вершине. Микротвердость составляла 1862 МПа. Значение микротвердости по сечению было постоянным, что указывает на однородность микроструктуры образцов. Точность измерения микротвердости была не хуже ±5%.

Пример 4

Нанопорошок теллурида цинка-кадмия Cd 0.96Zn0.04Те со средним размером частиц 10 нм был загружен в пресс-форму диаметром 10 мм и помещен в камеру пресса. Образец нагружали до давления 400 МПа, а затем выдерживали под давлением в течение 1 мин при температуре +20°С на воздухе. После снятия нагрузки полученный образец диаметром 10 мм и высотой 3 мм извлекали и измеряли его микротвердость на приборе ПМТ-3 с использованием алмазной пирамиды с углом 136° при вершине. Микротвердость составляла 1008 МПа. Значение микротвердости по сечению было постоянным, что указывает на однородность микроструктуры образцов. Точность измерения микротвердости была не хуже ±5%.

Способ получения объемного теллурида цинка-кадмия прессованием разработан и опробован в Институте физики твердого тела РАН.

Класс C30B28/02 непосредственно из твердого состояния

лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способы получения сложного гидросульфатфосфата цезия состава cs5(hso4)2(h2po4)3 -  патент 2481427 (10.05.2013)
способ получения фторидной нанокерамики -  патент 2436877 (20.12.2011)
магнитный полупроводниковый материал -  патент 2282685 (27.08.2006)
способ получения объемного теллурида кадмия прессованием -  патент 2278186 (20.06.2006)
способ получения сложной композиционной системы -  патент 2232213 (10.07.2004)

Класс C30B29/48 соединения типа AIIBVI

способ синтеза поликристаллов полупроводникового соединения групп ii-vi -  патент 2526382 (20.08.2014)
способ получения оптических поликристаллических материалов на основе селенида цинка -  патент 2516557 (20.05.2014)
способ получения поликристаллического оптического селенида цинка -  патент 2490376 (20.08.2013)
композиционный оптический материал и способ его получения -  патент 2485220 (20.06.2013)
способ выращивания методом отф cd1-xznxte, где 0 x 1, диаметром до 150 мм -  патент 2434976 (27.11.2011)
способ термической обработки монокристаллической подложки znte и монокристаллическая подложка znte -  патент 2411311 (10.02.2011)
способ получения полупроводниковых кристаллов типа aiibvi -  патент 2380461 (27.01.2010)
способ выращивания монокристалла теллурида кадмия -  патент 2341594 (20.12.2008)
способ обработки оптических элементов из селенида цинка -  патент 2338014 (10.11.2008)
способ получения наностержней селенида кадмия -  патент 2334836 (27.09.2008)

Класс B01J3/00 Способы, используемые при работе с пониженным или повышенным давлением и вызывающие химическую или физическую модификацию веществ; устройства для этой цели

поликристаллический алмаз -  патент 2522028 (10.07.2014)
устройство для получения алмазов -  патент 2514869 (10.05.2014)
самоочищающееся устройство и способ для управления давлением густой суспензии -  патент 2510878 (10.04.2014)
устройство и способ непрерывного термического гидролиза биологического материала -  патент 2509730 (20.03.2014)
технология лиофилизации обогащенной тромбоцитами плазмы с сохранением жизнеспособности факторов tgf pdgf vegf -  патент 2506946 (20.02.2014)
способ и устройство для кальцинирования гипса под давлением -  патент 2506227 (10.02.2014)
устройство для нагружения ударной волной образцов конической формы и для их сохранения после нагружения -  патент 2503494 (10.01.2014)
устройство для взрывного обжатия материалов -  патент 2497581 (10.11.2013)
устройство для регистрации профилей скорости свободной поверхности образцов при повышенных температурах -  патент 2497096 (27.10.2013)
способ получения сверхтвердого композиционного материала -  патент 2491987 (10.09.2013)
Наверх