способ получения препарата инсулина для перорального применения

Классы МПК:A61K38/28 инсулины
A61K47/48 неактивный ингредиент, химически связанный с активным ингредиентом, например полимер, связанный с лекарственным средством
A61K41/00 Лекарственные препараты, получаемые из материалов путем воздействия на них волновой энергии или облучения частицами
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью "Концерн О 3" (RU)
Приоритеты:
подача заявки:
2006-09-13
публикация патента:

Изобретение относится к фармакологии и медицине, в частности к эндокринологии, и описывает способ получения препарата инсулина, который заключается в том, что в 1-50% водный раствор полиэтиленоксида с мол. массой 0,4-40 кДа, предварительно облученный ионизирующим излучением в дозе 1,0-5,0 Мрад, вводят инсулин до конечной концентрации 1-10 мг/мл в соотношении полиэтиленоксид/инсулин, равном (1-500)/1, и смесь перемешивают до получения однородного прозрачного или слегка опалесцирующего раствора, что позволяет упростить процесс получения препарата инсулина и повысить его терапевтическую активность. 1 з.п. ф-лы, 3 табл.

Формула изобретения

1. Способ получения препарата инсулина для перорального применения, включающий смешивание последнего с водорастворимым полимером, отличающийся тем, что инсулин смешивают с предварительно активированным путем облучения ионизирующим излучением полиэтиленоксидом с мол. массой 0,4-40 кДа и концентрацией 1,0-50,0%, в соотношении инсулин-полиэтиленоксид, равном 1:(1-500) до конечной концентрации инсулина в смеси 1-10 мг/мл.

2. Способ по п.1, отличающийся тем, что полиэтиленоксид активируют путем облучения потоком ускоренных электронов или гамма-излучением в дозах 1,0-5,0 Мрад.

Описание изобретения к патенту

Изобретение относится к фармакологии и медицине, в частности к эндокринологии, и может быть использовано для получения препарата инсулина для перорального применения.

Инсулин является полипептидным гормоном с молекулярной массой около 6000. Он оказывает влияние на все виды обмена веществ в организме: повышает проникновение глюкозы в ткани организма и ее использование ими, снижает содержание гликогена в печени и повышает его количество в мышцах, повышает интенсивность синтеза белка и т.д.

Основным способом введения инсулина в организм человека являются подкожные или внутримышечные инъекции препарата. Попытки введения инсулина наиболее физиологическим и удобным для больных пероральным путем (через рот) оказались безуспешными, поскольку инсулин легко гидролизуется пищеварительными ферментами с потерей активности.

Преимущества перорального инсулина по сравнению с инъекционными коммерческими формами очевидны, поскольку длительные ежедневные инъекции могут вызывать различные серьезные осложнения: сопровождаются болевыми синдромами; приводят к развитию липодистрофии, представляющей не только косметический дефект, но и вызывающей потребность в увеличении доз гормона; травмируют психику, особенно у детей; вызывают стрессовые состояния, приводящие к еще более выраженной гипергликемии, что, в свою очередь, увеличивает потребность в гормоне и т.д.

Известен препарат инсулина перорального назначения, представляющий собой водно-масляную микроэмульсию, состоящую из инсулина, липидов и протеазного ингибитора. Микроэмульсия покрывается затем карбоксиметилцеллюлозой (Y.W.Cho, M.Flynm, Lancet, 1989, 30, p.1518).

Существенным недостатком этого препарата, наряду с трудоемкой и дорогостоящей технологией изготовления, является использование в качестве носителя карбоксиметилцеллюлозы, которая подвержена воздействию микробов, особенно в условиях промышленного производства. Кроме того, целлюлоза способна сорбировать значительные количества белка, который необходимо отмывать буфером с высокой ионной силой. Проведение такой процедуры в больших масштабах является дорогостоящей и может приводить к значительной инактивации инсулина.

Известен способ получения препарата инсулина для перорального применения, путем инкубации инсулина с эритроцитами, взятых в соотношении 1-4:100 в присутствии многофункционального связующего агента, в конечной концентрации 0,15-0,25%. При этом обычно в качестве носителя используют эритроциты, выделенные из крови крупного рогатого скота, свиней или крови человека, а в качестве связующего агента используют преимущественно бромистый циан, хлористый цианур или глутаровый диальдегид (Патент РФ №2058788, кл. А61К 38/28, on. 27.04.96). Перед использованием препарат эмульгируют в воде.

Недостатком известного способа являются высокая токсичность связующих агентов и связанная с этим необходимость в дорогостоящей очистке конечного продукта.

Известен способ получения препарата инсулина в виде геля для перорального применения путем иммобилизации инсулина в объеме сшитого полимера, модифицированного ингибитором протеолитических ферментов (R.Z.Creenley, et. all Polymer Matrices for orol delivery, Polymer Preprits 1990, V.31, N2, p.182-183). В качестве сшитого полимера используют акриловую или метакриловую кислоты, сшитые триэтиленгликольди(мет)акрилатом, а в качестве ингибитора протеолитических ферментов используют апротенин - панкреатический ингибитор трипсина.

Недостатком этого способа является невысокая устойчивость полученного препарата к действию пищеварительных ферментов, следствием чего является низкая активность проникающего в кровь инсулина.

Наиболее близким к заявляемому способу (прототипом), является способ получения препарата инсулина в виде геля путем иммобилизации инсулина в объеме сшитого полимера, модифицированного ингибитором протеолитических ферментов, в качестве которого используют овомукоид из яичного белка в концентрации 0,2-25 мг/г (набухшего в воде гидрогеля). Иммобилизацию проводят путем погружения сшитого модифицированного полимера в водный раствор инсулина с концентрацией 0,01-5 мг/мл на 1-2 часа до полного набухания полимера. Модифицированный полимер используют в количестве 0,01-1,0 г на 1 мл раствора инсулина (Патент РФ №2066551, кл. А61К 38/28, оп. 20.09.96).

Недостатками известного способа являются технологическая сложность выделения овомукоида и получения сшитого полимера, им модифицированного, дороговизна и низкая терапевтическая эффективность получаемого препарата.

Технической задачей предлагаемого изобретения является упрощение и удешевление способа получения препарата инсулина для перорального применения, а также повышение его терапевтической эффективности.

Техническая задача достигается предлагаемым способом, заключающимся в следующем.

Готовят 1-50% водный раствор полиэтиленоксида с молекулярной массой от 0,4 до 40 кДа. Затем раствор облучают высокоэнергетическим ионизирующим излучением, преимущественно гамма-излучением или потоком ускоренных электронов в дозах, обеспечивающих протекание свободно-радикальных реакций, преимущественно 1,0-5,0 Мрад. Далее в раствор радиационно-активированного полиэтиленоксида вводят инсулин до конечной концентрации (по белку) от 1-10 мг/мл (или по активности инсулина 10-100 МЕ/мл соответственно), в соотношении полиэтиленоксид:инсулин, равном (1-500):1, смесь перемешивают в течение 10-30 минут до получения однородного прозрачного или слегка опалесцирующего раствора.

Определяющим отличием заявляемого способа, по сравнению с прототипом, является то, что инсулин модифицируют полиэтиленоксидом, активированным ионизирующим излучением, что позволяет упростить способ и повысить терапевтическую эффективность препарата. При облучении в ходе радиационно-химического окисления в полимере образуются высокоактивные карбонильные группы. Активированный таким способом полимер образует с инсулином водорастворимый комплекс, который эффективно снижает уровень глюкозы при пероральном введении. Вследствие высокой растворимости в водных растворах, комплекс инсулина с полиэтиленоксидом полностью всасывается в кровь без диффузионных ограничений.

Использование овомукоида в качестве ингибитора протеаз в способе-прототипе позволяет защитить инсулин от протеолитических ферментов, а полиакриламидный гель выполняет функцию депонирования модифицированного инсулина. При частичном проникновении в кровь через стенку кишечника инсулин целенаправленно не депонируется в печени, так как не обладает сродством к органам ретикулоэндотелиальной системы и в связи с этим его действие будет аналогичным действию инсулина при парентеральном введении. Напротив, инсулин, модифицированный радиационно-активированым полиэтиленоксидом, проявляет свойства базального инсулина, то есть его фармакологический эффект максимально приближен к физиологическому механизму. Этому способствует полимер - полиэтиленоксид, обладающий способностью селективно захватываться клетками ретикулоэндотелиальной системы, прежде всего купферовскими клетками в печени.

Полученный технический результат не был очевиден из известных научно-технических данных о свойствах полиэтиленоксида и инсулина, так как в результате модификации инсулина радиационно-активированным полимером могла бы произойти полная потеря специфической гипогликемической активности инсулина за счет изменения его конформации и взаимодействия с инсулиновым рецептором клеток. Однако заявляемый способ позволяет не только сохранить специфическую гипогликемическую активность препарата инсулина, но и обеспечивает максимально физиологический механизм его действия за счет того, что активированный полимерный носитель образует с инсулином химически лабильные связи и используется только в качестве транспортирующего носителя инсулина в клетки печени, где и происходит высвобождение нативного инсулина.

Изобретение иллюстрируется следующими примерами конкретного получения препарата инсулина.

Пример 1

10% водный раствор полиэтиленоксида с молекулярной массой 1,5 кДа облучают потоком ускоренных электронов в дозе 5,0 Мрад. В облученный раствор вносят инсулин до конечной концентрации 10 мг в 1 мл (соотношение полиэтиленоксид: инсулин равно 10:1). Смесь перемешивают 10 минут и получают препарат инсулина в виде слегка опалесцирующего раствора. Выход готового продукта составляет 98%.

Пример 2

50,0% водный раствор полиэтиленоксида с молекулярной массой 0,4 кДа облучают тормозным гамма-излучением в дозе 1,0 Мрад. В облученный раствор вносят инсулин до конечной концентрации 1 мг в 1 мл (соотношение полиэтиленоксид: инсулин равно 500:1). Смесь перемешивают 30 минут и получают препарат инсулина в виде прозрачного раствора. Выход готового продукта составляет 97%.

Пример 3

5% водный раствор полиэтиленоксида с молекулярной массой 15 кДа облучают потоком ускоренных электронов в дозе 2,5 Мрад. В облученный раствор вносят инсулин до конечной концентрации 10 мг в 1 мл (соотношение полиэтиленоксид:инсулин равно 5:1). Смесь перемешивают 15 минут и получают препарат инсулина в виде слегка опалесцирующего раствора. Выход готового продукта составляет 99%.

В таблице 1 представлены результаты исследования гипогликемического действия на интактных крысах линии Wistar комплекса инсулина с радиационно-активированным полиэтиленоксидом. В опытной группе экспериментальным животным в/ж однократно введено по 1 мл модифицированного полиэтиленоксидом инсулина (состав: 30 МЕ/мл свиного инсулина, 12,5 мас.% радиационно-активированного полиэтиленоксида 1500, соотношение полиэтиленоксид:инсулин равно 125:1). В контрольной группе животным однократно введено по 1 мл свиного инсулина с активностью 30 МЕ/мл.

Как видно из результатов, представленных в таблице 1, модифицированный полиэтиленоксидом инсулин начинает проявлять основную гипогликемическую активность через 3 часа после в/ж введения и сохраняет ее до 10 часов. Полученные данные свидетельствуют о приближении действия модифицированного инсулина к базальной секреции инсулина поджелудочной железой.

В таблице 2 представлены данные по исследованию гипогликемической активности модифицированного полиэтиленоксидом человеческого генно-инженерного инсулина на модели аллоксанового диабета у крыс. В опытной группе экспериментальным животным в/ж однократно введено по 1 мл модифицированного полиэтиленоксидом инсулина (состав: 50 МЕ/мл человеческого инсулина, 12,5 мас.% радиационно-активированного полиэтиленоксида 1500, соотношение полиэтиленоксид: инсулин равно 70:1). В контрольной группе животным введено по 1 мл человеческого инсулина с активностью 50 МЕ/мл.

Как видно из представленных результатов, модифицированный инсулин обладает выраженной гипогликемической активностью при в/ж введении крысам с аллоксановой моделью диабета.

В таблице 3 представлены сравнительные данные по влиянию модифицированного полиэтиленоксидом инсулина (соотношение полиэтиленоксид:инсулин равно 70:1) на абсолютные значения уровня инсулина в плазме крови у крыс при однократном в/ж введении. В опытной группе интактным крысам линии Wistar, массой 200 - 240 г в/ж введен модифицированный полиэтиленоксидом человеческий инсулин из расчета 250 МЕ/кг. В контрольной группе животным было введено в/ж эквивалентное количество немодифицированного инсулина. Содержание инсулина в плазме крови у крыс (в способ получения препарата инсулина для перорального применения, патент № 2316339 ЕД/мл) определяли иммуноферментным методом.

Из данных, приведенных в таблице, видно, что инсулин, модифицированный полиэтиленоксидом при в/ж введении либо приводит к повышению уровня инсулина в плазме крови, либо препятствует его снижению, то есть модифицированный инсулин максимально приближается к базальному инсулину, секретируемому поджелудочной железой в рамках физиологической нормы.

Заявляемый способ получения препарата инсулина для перорального применения, в отличие от способа прототипа, отличается простотой и экономичностью, так как его получение состоит всего из двух стадий, в которых используется дешевый полимерный носитель - полиэтиленоксид, технологически простой способ его активации - воздействие ионизирующего излучения на раствор полимера, а также простой способ модификации инсулина активированным полимером посредством введения в раствор активированного полимера инсулина до требуемой концентрации (активности). Препарат инсулина, получаемый заявляемым способом, обладает высокой терапевтической активностью, определяемой как по снижению концентрации глюкозы в крови, так и по прямому определению уровня инсулина в крови.

Таблица 1
№ животного (Опыт)Время измерения уровня глюкозы в крови, мин
0 60120 180240300 360420480 540600
Концентрация глюкозы в крови, ммоль/л
17,95,1 5,65,35,1 5,14,63,6 5,45,75,9
25,9 5,35,04,8 4,34,74,9 4,44,96,1 5,9
35,2 5,26,3 5,14,74,6 4,34,35,2 6,14,9
4 7,17,1 6,25,74,9 4,64,74,9 5,94,84,6
56,1 6,06,76,0 6,36,24,7 5,66,35,6 5,1
 
Время измерения уровня глюкозы в крови, мин
Животного (Контроль)0 60120180 240300360 420480540 600
Концентрация глюкозы в крови, ммоль/л
1 6,55,37,3 5,65,65,4 5,25,06,6 6,15,6
2 6,86,2 7,46,46,1 5,95,95,3 5,65,45,1
35,3 5,85,55,7 5,15,36,2 5,44,85,5 5,4
47,5 6,77,7 6,85,55,4 6,37,66,4 6,05,2
5 5,96,9 6,16,26,7 6,15,55,2 6,15,85,8
Среднее значение (Опыт) 6,445,745,96 5,385,06 5,044,644,56 5,545,66 5,28
Среднее значение (Контроль) 6,406,18 6,806,145,80 5,625,82 5,705,905,76 5,42

Таблица 2
Серия опытовВремя измерения уровня глюкозы в крови, час
Исходное значение2 468 1024
Изменение концентрации глюкозы в крови, ммоль/л
Контроль (n=5)23,4±2,8 -1,1±2,1-1,2±1,7 -5,1±2,3-0,4±4,8 +1,3±3,8-0.8±1,8
Опыт (n=5)26,2±3,5 -5,8±1,0-9,1±1,0 -8,9±1,5-4,9±3,2 -0,5±2,3-4,1±2,2

Таблица 3
Серия опытовИсходные значения Время измерения содержания инсулина в плазме крови у крыс, час
4 56
Содержание инсулина в плазме крови у крыс (в способ получения препарата инсулина для перорального применения, патент № 2316339 ЕД/мл)
Интактные животные 26±716±9 14±716±8
Контроль27±10 10±325±6 27±10
Опыт 23±623±6 35±1020±6

Класс A61K38/28 инсулины

инсулин-олигомерные конъюгаты, их препараты и применения -  патент 2527893 (10.09.2014)
композиции для доставки белков и методы их применения -  патент 2526904 (27.08.2014)
аналоги инсулина, устойчивые к протеазам -  патент 2524150 (27.07.2014)
твердая кишечнорастворимая лекарственная форма с-пептида проинсулина для перорального применения (варианты) и способ ее получения (варианты) -  патент 2522897 (20.07.2014)
применение сверхбыстродействующего инсулина -  патент 2519706 (20.06.2014)
фармацевтическая композиция -  патент 2519099 (10.06.2014)
конъюгат инсулина с применением фрагмента иммуноглобулина -  патент 2519073 (10.06.2014)
производные инсулина -  патент 2518460 (10.06.2014)
аналоги инсулина с ацильной и алкиленгликолевой группировкой -  патент 2514430 (27.04.2014)
аналоги инсулиноподобного фактора роста-1 (igf-1), содержащие аминокислотную замену в положении 59 -  патент 2511577 (10.04.2014)

Класс A61K47/48 неактивный ингредиент, химически связанный с активным ингредиентом, например полимер, связанный с лекарственным средством

новый вариант эксендина и его конъюгат -  патент 2528734 (20.09.2014)
синтетический иммуноген для защиты от токсического действия наркотических и психоактивных веществ -  патент 2526807 (27.08.2014)
конъюгированные белки с пролонгированным действием in vivo -  патент 2526804 (27.08.2014)
производные fgf21 со связующим альбумина а-в-с-d-e- и их применение -  патент 2525393 (10.08.2014)
оксинтомодулин человека, его применение, лекарственный препарат на его основе и способ применения препарата для лечения и профилактики гипергликемии -  патент 2524204 (27.07.2014)
конъюгаты, содержащие гидрофильные спейсеры линкеров -  патент 2523909 (27.07.2014)
конъюгаты производного антрациклина, способы их получения и их применение в качестве противоопухолевых соединений -  патент 2523419 (20.07.2014)
композиции и способы доставки фармакологических агентов -  патент 2522977 (20.07.2014)
лекарственный препарат и способ улучшения реологических свойств мокроты и ингаляционное применение такого препарата -  патент 2522846 (20.07.2014)
хелатные амфифильные полимеры -  патент 2519713 (20.06.2014)

Класс A61K41/00 Лекарственные препараты, получаемые из материалов путем воздействия на них волновой энергии или облучения частицами

способ лечения радиационного, химического и/или биологического поражения организма и способ получения глобулинов для лечения радиационного, химического и/или биологического поражения организма -  патент 2524612 (27.07.2014)
применение 5-аминолевулиновой кислоты и ее производных в твердой форме для фотодинамического лечения и диагностики -  патент 2521228 (27.06.2014)
матрица для клеточной трансплантологии -  патент 2521194 (27.06.2014)
конъюгаты rgd-(бактерио)хлорофилл для фотодинамической терапии и визуализации некротических опухолей -  патент 2518296 (10.06.2014)
способ получения инъекционного заменителя синовиальной жидкости -  патент 2517237 (27.05.2014)
способ введения sirna в клетки фотохимической интернализацией -  патент 2510826 (10.04.2014)
магнитные преобразователи -  патент 2500622 (10.12.2013)
гель-основа для ранозаживляющих и косметических средств и способ его получения -  патент 2485938 (27.06.2013)
способ подготовки измельченного лекарственного растительного сырья (лрс) для таблетирования методом прямого прессования -  патент 2484838 (20.06.2013)
способ профилактики и/или лечения раковых заболеваний -  патент 2480201 (27.04.2013)
Наверх