кондуктометр

Классы МПК:G01N27/02 измерением полного сопротивления материалов 
Автор(ы):,
Патентообладатель(и):Морской гидрофизический институт Национальной академии наук Украины (МГИ НАН Украины) (UA)
Приоритеты:
подача заявки:
2005-06-30
публикация патента:

Изобретение относится к измерительной технике и предназначено для измерения электрической проводимости жидкости. Кондуктометр содержит контактный датчик электропроводности с двумя токовыми и двумя потенциальными электродами, источник постоянного напряжения, генератор прямоугольных импульсов, четырехплечий мостовой коммутатор с управляемыми ключами в плечах, управляющие входы которых в противолежащих плечах попарно объединены и соединены с выходом генератора прямоугольных импульсов для первой пары непосредственно и для второй пары через инвертор. Вторая вершина первой диагонали моста заземлена, демодулятор, управляемый генератором прямоугольных импульсов, и фильтр низких частот. Устройство также содержит источник опорного напряжения, выход которого подан на первый вход первого операционного усилителя, выход которого соединен с базой транзистора, эмиттер которого подан на первую вершину первой диагонали мостового коммутатора, вершины второй диагонали которого соединены с токовыми электродами датчика. Потенциальные электроды датчика поданы на последовательно включенные демодулятор, фильтр низких частот и инструментальный усилитель, выход которого соединен со вторым входом операционного усилителя. Коллектор транзистора через нагрузочный резистор соединен с выходом источника постоянного напряжения. Выводы нагрузочного резистора поданы на входы второго операционного усилителя, выход которого является внешним выходом устройства. Техническим результатом изобретения является обеспечение пропорциональной зависимости выходного сигнала кондуктометра от проводимости жидкости и повышение точности за счет совместного применения четырехэлектродного датчика, питаемого знакопеременным током, и преобразователя проводимости жидкости между потенциальными электродами в постоянный ток и далее в постоянное напряжение. 1 ил. кондуктометр, патент № 2312331

кондуктометр, патент № 2312331

Формула изобретения

Кондуктометр, содержащий контактный датчик электропроводности, источник постоянного напряжения, генератор прямоугольных импульсов, четырехплечий мостовой коммутатор с управляемыми ключами в плечах, управляющие входы которых в противолежащих плечах попарно объединены и соединены с выходом генератора прямоугольных импульсов для первой пары непосредственно и для второй пары через инвертор, причем вторая вершина первой диагонали моста заземлена, последовательно включенные демодулятор, управляемый генератором прямоугольных импульсов, и фильтр низких частот, отличающийся тем, что он содержит контактный датчик электропроводности с двумя токовыми и двумя потенциальными электродами, источник опорного напряжения, выход которого подан на первый вход первого операционного усилителя, выход которого соединен с базой транзистора, эмиттер которого подан на первую вершину первой диагонали мостового коммутатора, вершины второй диагонали которого соединены с токовыми электродами датчика, потенциальные электроды датчика поданы на последовательно включенные демодулятор, фильтр низких частот и инструментальный усилитель, выход которого соединен со вторым входом первого операционного усилителя, коллектор транзистора через нагрузочный резистор соединен с выходом источника постоянного напряжения, выводы нагрузочного резистора поданы на входы второго операционного усилителя, выход которого является внешним выходом устройства.

Описание изобретения к патенту

Изобретение относится к измерительной технике и предназначено для измерения электрической проводимости жидкостей.

Оно может быть использовано в океанографии для измерения удельной электропроводности морской воды.

Известны измерители электропроводности жидкости, содержащие четырехэлектродные датчики, включенные в схемы вторичных измерительных преобразователей с питанием датчиков по токовым электродам постоянным или переменным током и съемом информативного сигнала напряжения с потенциальных электродов [1].

Измерители с питанием датчиков постоянным током имеют ограниченную точность из-за поляризации электродов и возникновения нестабильности пограничного слоя на электродах.

Измерители с питанием датчиков переменным током ограничены по точности из-за необходимости преобразования напряжения переменного тока в напряжение постоянного тока перед регистрацией или аналого-цифровым преобразованием.

Другим недостатком всех устройств, в которых напряжение с потенциальных электродов прямо используется для определения электропроводности жидкости, является обратная функциональная зависимость результата измерения от проводимости, что приводит к потере чувствительности при больших проводимостях, например, характерных для морской воды.

Наиболее близким по совокупности признаков к предлагаемому устройству является дифференциальный кондуктометр, содержащий четырехплечий мост из ключей, к одной диагонали которого подключен источник постоянного напряжения, а к другой через конденсаторы подключены эталонная и измерительная двухэлектродные ячейки, выходы которых поданы на сумматор тока, выход которого подключен к демодулятору и фильтру низких частот [2]. В этом устройстве питание двух двухэлектродных датчиков осуществляется в противофазе знакопеременным постоянным напряжением (меандром) и токи через датчики (ячейки) пропорциональны проводимостям жидкостей. Однако нестабильность сопротивления переходного слоя на жидких электродах ограничивает точность устройства.

Прототип содержит следующие признаки, совпадающие с существенными признаками заявленного изобретения: контактный датчик электропроводности, источник постоянного напряжения, генератор прямоугольных импульсов, четырехплечий мостовой коммутатор с управляемыми ключами в плечах, управляющие входы которых в противолежащих ключах попарно объединены и соединены с входом генератора прямоугольных импульсов для первой пары непосредственно и для второй пары через инвертор, причем вторая вершина первой диагонали моста заземлена, последовательно включенные демодулятор, управляемый генератором прямоугольных импульсов, и фильтр низких частот.

В основу изобретения поставлена задача создания кондуктометра, в котором за счет совместного применения четырехэлектродного датчика, питаемого знакопеременным током, и преобразователя проводимости жидкости между потенциальными электродами в постоянный ток и далее в постоянное напряжение обеспечивается технический результат - обеспечение пропорциональной зависимости выходного сигнала кондуктометра от проводимости жидкости и повышение точности.

Поставленная задача решается тем, что кондуктометр с четырехэлектродным датчиком выполнен по схеме управляемого генератора тока на транзисторе и содержит источник опорного напряжения, выход которого подан на первый вход первого операционного усилителя, выход которого соединен с базой транзистора, коллектор которого через нагрузочный резистор соединен с выходом источника постоянного напряжения, а эмиттер через четырехплечий мостовой коммутатор и токовые электроды датчика соединен с общей шиной, потенциальные электроды датчика соединены с последовательно включенными демодулятором, фильтром низких частот и инструментальным усилителем, выход которого подан на второй вход первого операционного усилителя, управляющие входы ключей в противолежащих плечах моста попарно объединены, генератор прямоугольных импульсов, выход которого подан на управляющие входы демодулятора и первой пары ключей и через инвертор - на управляющие входы второй пары ключей, выходы нагрузочного резистора поданы на входы второго операционного усилителя, выход которого является внешним выходом устройства.

Структурная схема устройства представлена на чертеже. Устройство содержит четырехэлектродный датчик 1 с токовыми Т и потенциальными П электродами, четырехплечий мостовой коммутатор 2 направления тока через датчик с ключами 21, 22, 2 3 и 24 в плечах, транзистор 3, коллектор которого через нагрузочный резистор 4 соединен с выходом источника постоянного напряжения (ИПН) 5, а эмиттер соединен с первой вершиной первой диагонали мостового коммутатора 2, вторая вершина которой заземлена. Потенциальные электроды датчика соединены с входами демодулятора (ДМ) 6, выход которого подан на последовательное включенные фильтр низких частот (ФНЧ) 7 и инструментальный усилитель 8, выход которого подан на второй вход операционного усилителя 9, первый вход которого соединен с выходом источника опорного напряжения (ИОН) 10, а выход подан на базу транзистора 3.

Выход генератора прямоугольных импульсов 11 подан на управляющие входы демодулятора 6 и первой пары ключей 21 и 23 и через инвертор (ИН) 12 - на управляющие входы второй пары ключей 22 и 2 4. Выводы нагрузочного резистора 4 поданы на входы второго операционного усилителя 13, выход которого является внешним выходом устройства.

Транзистор 3 выполняет роль регулирующего в управляемом генераторе тока. Это может быть транзистор типа КТ361.

Токозадающую цепь генератора тока образуют датчик 1, включенный в эмиттерную цепь транзистора через четырехплечий мостовой коммутатор 2, служащий для изменения направления тока через токовые электроды датчика. В качестве ключей могут быть использованы электронные ключи типа 561 КТ3.

Цепь обратной связи генератора тока образуют последовательно включенные демодулятор 6, фильтр низких частот 7 и инструментальный усилитель 8. Демодулятор 6 предназначен для преобразования знакопеременного напряжения квазипостоянной амплитуды в постоянное. В качестве демодулятора 6 целесообразно использовать второй четырехплечий мостовой коммутатор, аналогичный коммутатору 2.

Фильтр низких частот 7 служит для сглаживания пульсаций от переходных процессов при переключении направления тока через датчик. Фильтром низких частот может быть RC- или LC-фильтр.

Инструментальный усилитель 8 предназначен для передачи и усиления в k раз сигнала обратной связи, снимаемого с потенциальных электродов датчика и прошедшего демодуляцию и сглаживание. В качестве инструментального усилителя может быть использована микросхема INA111.

Операционный усилитель 9 предназначен для сравнения (вычитания) опорного напряжения с выхода источника 10 и сигнала обратной связи. Эту задачу может решать операционный усилитель типа ОРА 137.

Генератор прямоугольных импульсов 11 служит для выдачи последовательности импульсов со скважностью 0,5 (типа меандр) на демодулятор 6 и на управляющие входы ключей 21 и 23 коммутатора 2, которые замыкаются на время импульса. Инвертор 12 служит для выработки импульсов на управляющие входы ключей 22 и 24, на время паузы в импульсной последовательности с выхода генератора 11.

В совокупности генератор 11 и инвертор 12 могут быть реализованы в составе генератора импульсов и счетного триггера, причем выход генератора соединен со счетным входом триггера, а выходы прямого и инверсного управляющих сигналов взяты с разных плеч триггера.

Управляющие сигналы на коммутатор могут быть поданы извне, например, от микроконтроллера.

Частота импульсов от генератора 11 устанавливается такой, чтобы переходные процессы после переключения направления тока в датчике, вызванные наличием емкости электролита, успевали бы завершиться. Эта частота устанавливается экспериментально для конкретного датчика и жидкости.

Операционный усилитель 13 служит для съема и привязки к "земле" напряжения с нагрузочного резистора 13. Эту задачу может решить микросхема ОРА 137.

Кондуктометр работает следующим образом.

Датчик электропроводности помещен в жидкость. Управляющим импульсом с генератора 11 ключи 21 и 2 3 замкнуты, а ключи 22 и 2 4 разомкнуты. Через транзистор 3, ключ 2 1, токовые электроды ТТ датчика 1, ключ 2 3 протекает ток I.

На потенциальных электродах ПП датчика 1 возникает постоянное напряжение

кондуктометр, патент № 2312331

где Gx - электропроводность участка жидкости между потенциальными электродами.

Напряжение UПП через демодулятор 6, фильтр низких частот 7 поступает на вход инструментального усилителя 8, усиливается в "k1" раз и подается на второй вход операционного усилителя 7 для сравнения с опорным напряжением UОП. Сигнал разбаланса поступает с выхода операционного усилителя 7 на базу транзистора 3 и в цепи транзистора автоматически устанавливается ток I, при котором

k 1UПП=UОП,

следовательно, кондуктометр, патент № 2312331 ,

кондуктометр, патент № 2312331

При этом напряжение U на нагрузочном резисторе 4 сопротивлением RH будет равно

кондуктометр, патент № 2312331

Напряжение U поступает на вход операционного усилителя 13, усиливается при необходимости в k2 раз и поступает на внешний выход устройства равным

кондуктометр, патент № 2312331

где кондуктометр, патент № 2312331 - постоянная, зависящая от параметров схемы устройства.

В следующем такте, во время паузы между импульсами от генератора 14 ключи 21 и 23 размыкаются, ключи 22 и 2 4 замыкаются, направление постоянного тока через токовые электроды ТТ датчика изменяется на противоположное, полярность напряжения на потенциальных электродах ПП после окончания переходного процесса изменяется на противоположную (-Uпкондуктометр, патент № 2312331 ). Однако демодулятор 6, управляемый сигналом от генератора 11, восстанавливает исходную полярность постоянного напряжения (UПП), а фильтр низких частот 7 сглаживает помехи от переходных процессов.

На входе инструментального усилителя 8 сохраняется сигнал постоянного напряжения U ПП без изменения полярности и устройство работает так же, как и в первом такте. Далее такты работы повторяются.

Таким образом, опрос четырехэлектродного датчика электропроводности осуществляется разнополярным постоянным током, а выходным информативным сигналом, пропорциональным электропроводности жидкости, является напряжение постоянного тока, которое легко преобразуется в код. Это позволяет исключить погрешности, присущие контактным датчикам при работе на постоянном токе, и исключить использование преобразователя переменного тока в код, необходимого при опросе датчика переменным током.

Источники информации

1. Степанок И.А. Океанологические измерительные преобразователи. М.: Гидрометеоиздат. - 270 с.

2. Патент РФ №2006844, 5 G01N 27/02. Дифференциальный кондуктометр. К.Д.Латария, С.М.Бениашвили, Г.Н.Сехниашвили, М.В.Гаприндашвили. БИ №2, 1994, с.131 - прототип.

Класс G01N27/02 измерением полного сопротивления материалов 

способ и система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx очистных сооружений объектов водоотведения жилищно-коммунального хозяйства -  патент 2522316 (10.07.2014)
способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов -  патент 2506577 (10.02.2014)
способ определения остаточной водонасыщенности и других форм связанной воды в материале керна -  патент 2502991 (27.12.2013)
устройство для измерения удельной электропроводности пластичного вещества -  патент 2498283 (10.11.2013)
способ определения содержания водорода в титане -  патент 2498282 (10.11.2013)
способ определения электрических характеристик и/или идентификации биологических объектов и устройство для его осуществления -  патент 2488104 (20.07.2013)
устройство для измерения объемной концентрации пузырьков газа в жидкости -  патент 2485489 (20.06.2013)
трехэлектродный датчик -  патент 2482469 (20.05.2013)
способ селективного определения концентрации аммиака и его производных в газовой среде -  патент 2473893 (27.01.2013)
способ определения электрофизического параметра порошкообразных материалов и устройство, его осуществляющее -  патент 2467319 (20.11.2012)
Наверх