способ реализации явления безызносности при трении скольжения

Классы МПК:F16C33/12 структура материала; применение особых материалов или способов обработки поверхности, например для придания антикоррозийных свойств
Автор(ы):, , , , ,
Патентообладатель(и):Институт физики Дагестанского научного центра РАН (RU)
Приоритеты:
подача заявки:
2004-11-29
публикация патента:

Изобретение относится к узлам и деталям машин, в частности подшипникам скольжения, например, двигателя внутреннего сгорания. Способ реализации явления безызносности при трении скольжения, обеспечиваемого снижением вязкости поверхностного слоя сплава, заключается в том, что снижение вязкости для сплавов с высокопластичной структурной составляющей (алюминий-олово, алюминий-свинец) достигается за счет исключения окислов из поверхностного слоя в зоне трения с помощью селективных газовых мембран. Технический результат: способ позволяет сравнительно просто реализовать явление безызносности независимо от режимов работы двигателя внутреннего сгорания и снизить износ подшипников скольжения в три-пять раз. 2 табл.

Формула изобретения

Способ реализации явления безызносности при трении скольжения, обеспечиваемого снижением вязкости поверхностного слоя сплава, отличающийся тем, что снижение вязкости для сплавов с высокопластичной структурной составляющей (алюминий-олово, алюминий-свинец) достигается за счет исключения окислов из поверхностного слоя в зоне трения с помощью селективных газовых мембран.

Описание изобретения к патенту

Изобретение относится к узлам и деталям машин, в частности, подшипникам скольжения. При трении с возрастанием скоростей и удельных нагрузок, ухудшением условий смазки, повышением требований к антифрикционным характеристикам возрастает роль процессов, принципиально меняющих поведение материалов на основе самоорганизации. Как показано в [1], формирование диссипативных структур при самоорганизации практически можно оценить по экстремальному характеру зависимостей коэффициента трения от скорости скольжения и нагрузки. Но, чтобы добиться рекордных показателей антифрикционных характеристик, этого недостаточно. Необходимы дополнительные меры. Среди них явление избирательного переноса, обеспечивающего явление или эффект безызносного трения, достигается за счет применения специфических смазочных сред в парах трения медный сплав - сталь. Смазка играет роль защитного покрытия, обладающего истинной упругостью формы и подчиняющегося закону Гука [2]. Вторая разновидность эффекта безызносного трения, имеющая место при работе медных и меднографитовых антифрикционных материалов, достигается за счет введения специальных защитных покрытий (графит, окись алюминия, жидкокристаллические покрытия) [3]. Третья разновидность безызносного терния, имеющая место при работе сплавов алюминий-олово, алюминий-свинец, проявляется только благодаря высокой пластичности "мягкой" структурной составляющей применяемых сплавов [4], но дополнительные меры также нужны. Во всех рассмотренных случаях процесс деформации поверхностного слоя при трении приводит к интенсивной фрагментации и созданию мелкозернистой структуры. Но, как свидетельствуют результаты структурных исследований [2, 3, 4], поверхностные слои из меди и олова (или свинца) заметно различаются по сплошности материала. В поверхностных слоях медных сплавов отмечена высокая пористость, которая не уменьшала сопротивляемость материала внешним нагрузкам. В гетерофазных сплавах на алюминиевой основе при трении образовывался поверхностный слой из олова (или свинца) без нарушения сплошности материала. Такое различие, как показано в [1], приводит к различной роли вязкости материала и факторов, влияющих на нее в процессе трения. В сплавах алюминий-олово, алюминий-свинец поверхность трения в значительной степени покрыта окисной пленкой, которая заполняет весь деформированный слой и, будучи менее пластичной, значительно повышает вязкость, а следовательно, сопротивление материала трению. В итоге для реализации третьего случая явления безызносности необходимо предотвращение окисления поверхностного слоя при трении, что достигается за счет создания инертной атмосферы в зоне трения.

Цель изобретения - реализация явления безызносности в высокопластичных материалах за счет создания инертной атмосферы в зоне трения. Указанная цель достигается применением газопроницаемых селективных мембран, создающих газовую среду без кислорода. Они успешно используются при хранении пищевых продуктов.

Примеры осуществления

1. Лабораторные испытания на машине трения СМЦ-2.

Испытания проводились в воздушной и инертной атмосфере, в режиме граничной смазки на антифрикционных сплавах алюминий-олово, алюминий-свинец. Испытания проводились по схеме вал - вкладыш из антифрикционного сплава. В испытательной камере инертная среда создавалась газообразным азотом и с помощью селективной мембраны PVTMS, обеспечивающей на 95% атмосферу азота. Испытаниям подвергались образцы сплавов массой 10 грамм. Интенсивность изнашивания оценивалась по весу образцов до и после испытания. Предварительно образцы подвергались притирке в условиях, аналогичных основному эксперименту. Продолжительность притирки в воздушной атмосфере 1 час, а при работе в инертной среде 3 часа. Продолжительность основных испытаний составила первоначально 6 часов, затем была снижена до 2 часов для каждого из режимов нагрузки. Диапазон нагрузок был выбран с учетом работы сплавов в двигателях внутреннего сгорания. Результаты испытаний показали, что в инертной среде, когда имеет место явление безызносности, коэффициент трения снижается на 50-80%, а интенсивность изнашивания - на один порядок.

2. Стендовые испытания на серийно изготавливаемом дизеле 2ч ОАО "Дагдизель".

Программа стендовых испытаний предусматривала два цикла. Первый цикл включал загрузку дизеля на 120 часов по специальному суточному графику с наличием в картере двигателя обычной атмосферы. Второй цикл - также загрузку на 120 часов, но с поддержанием в картере двигателя инертной среды. Достижение инертной среды обеспечивалось удалением кислорода из атмосферы картера с помощью селективных мембран, установленных в патрубке, соединяющем картер с всасывающим каналом в головке блока цилиндров.

способ реализации явления безызносности при трении скольжения, патент № 2310777

Для фиксации величины износа производилось снятие размеров вкладышей по трем сечениям (перпендикулярно износу) перед испытаниями, после первого и второго цикла испытаний. Износ оценивался по разности размеров вкладышей после соответствующих циклов испытаний.

способ реализации явления безызносности при трении скольжения, патент № 2310777

Результаты испытаний в условиях, при которых по суточному графику обеспечивались режимы сухого, полусухого и граничного трения показали, что имел место эффект безызносного трения с обеспечением снижения величины износа подшипников в три-пять раз.

Положительный эффект предлагаемого способа

1. Способ позволяет без введения в процесс трения дополнительных материалов и без заметных других материальных затрат реализовать явление безызносности на таких антифрикционных сплавах, как алюминий-олово, алюминий-свинец.

2. Способ позволяет сравнительно просто реализовать явление безызносности независимо от режимов работы двигателя внутреннего сгорания и снизить износ подшипников скольжения в три-пять раз.

Источники информации

1. Шахназаров Т.А., Тахтарова Ю.А. Термодинамический критерий формирования диссипативных структур в антифрикционных материалах. //Проблемы машиностроения и надежности машин 2003, №3, с.70-75.

2. Рыбакова Л.М., Куксенова Л.И. Структура и износостойкость металла. М., Машиностроение, 1982, 212 с.

3. Булатов В.П., Кириенко О.Ф. Структурное исследование механизмов безызносного трения конструкционных материалов на основе синергетических представлений //Проблемы машиностроения и надежности машин, 1991, №2, с.56-61.

4. Шахназаров Т.А., Тахтарова Ю.А. Реализация эффекта безызносного трения в сплавах алюминий-олово, алюминий-свинец. //Письма в ЖТФ, 2002, т.28, в.4, с.7-11.

Класс F16C33/12 структура материала; применение особых материалов или способов обработки поверхности, например для придания антикоррозийных свойств

материал подшипника скольжения -  патент 2524812 (10.08.2014)
элемент скольжения с открытой функциональной поверхностью -  патент 2520908 (27.06.2014)
втулка рычажной тормозной системы рельсового транспорта -  патент 2499921 (27.11.2013)
способ получения износостойкого антифрикционного самосмазывающегося сплава -  патент 2492964 (20.09.2013)
втулка рычажной тормозной системы рельсового транспорта -  патент 2482342 (20.05.2013)
антифрикционное покрытие -  патент 2481502 (10.05.2013)
способ изготовления антифрикционного слоя вкладышей подшипников скольжения -  патент 2480637 (27.04.2013)
состав для изготовления регулирующего устройства автомобиля -  патент 2476466 (27.02.2013)
элемент скольжения и способ его получения -  патент 2456486 (20.07.2012)
способ получения алюминиево-свинцовых подшипников скольжения -  патент 2453742 (20.06.2012)
Наверх