автоматизированный саморегулирующийся линейный нагреватель для прогрева текучей среды в скважине (варианты)

Классы МПК:E21B36/04 с использованием электронагревателей
E21B37/00 Способы или устройства для очистки буровых скважин
H05B3/56 нагревательные кабели 
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью "ПермНИПИнефть" (RU)
Приоритеты:
подача заявки:
2005-06-02
публикация патента:

Изобретение относится к области нефтедобычи. Технический результат - повышение точности и надежности управления нагревом текучей среды в скважине с различными способами добычи. Автоматизированный саморегулирующийся линейный нагреватель (АСЛН) состоит из линейного нагревателя, выполненного, например, в виде кабельной линии (КЛ) 1, состоящей из низкотемпературного кабеля 2 и высокотемпературного - нагревательного кабеля (НК) 3, токопроводящие жилы с одного конца которого соединены между собой и изолированы для образования концевой заделки 4. Другой конец кабеля соединен с источником питания (ИП) 5. КЛ 1 установлена снаружи НКТ 6. АСЛН также содержит наземный измерительно-управляющий блок (ИУБ) 7, представляющий собой, например, программируемый частотный электронный модуль управления, и внутрискважинный измерительный блок (ВСИБ), состоящий из одного или нескольких датчиков (Д) 8 для считывая термобарических параметров текучей среды (ТС) 9. Указанные Д 8 предназначены для преобразования текущих значений температуры и/или давления в частоту, соединены с ИУБ 7 посредством КЛ 1 и установлены в теле НКТ 6 и/или в теле ее соединительной муфты (СМ) 10 таким образом, чтобы чувствительный элемент 11 Д 8 находился приблизительно заподлицо с внутренней и/или с наружной стенкой НКТ 6 или с внутренней и/или с наружной стенкой СМ 10, в зависимости от потребности измерения параметров ТС 9 внутри НКТ 6 и/или в затрубном пространстве 12 скважины. 2 н. и 9 з.п. ф-лы, 1 ил. автоматизированный саморегулирующийся линейный нагреватель для   прогрева текучей среды в скважине (варианты), патент № 2291281

автоматизированный саморегулирующийся линейный нагреватель для   прогрева текучей среды в скважине (варианты), патент № 2291281

Формула изобретения

1. Автоматизированный саморегулирующийся линейный нагреватель для прогрева текучей среды в скважине, оборудованной насосно-компрессорными трубами НКТ, характеризующийся тем, что он содержит установленный в скважине снаружи НКТ линейный нагреватель в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, причем токопроводящие жилы указанного нагревателя с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания, наземный измерительно-управляющий блок и внутрискважинный измерительный блок, состоящий из одного датчика для считывания термобарических параметров текучей среды и соединенный электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанный датчик размещен в теле НКТ или в теле ее соединительной муфты таким образом, чтобы чувствительный элемент датчика находился приблизительно заподлицо с внутренней или с наружной стенкой НКТ, или с внутренней или с наружной стенкой указанной муфты в зависимости от потребности измерения термобарических параметров текучей среды внутри НКТ или в затрубном пространстве скважины.

2. Автоматизированный саморегулирующийся линейный нагреватель для прогрева текучей среды в скважине, оборудованной насосно-компрессорными трубами НКТ, характеризующийся тем, что он содержит установленный в скважине снаружи НКТ линейный нагреватель в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, причем токопроводящие жилы указанного нагревателя с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания, наземный измерительно-управляющий блок и внутрискважинный измерительный блок, состоящий из датчиков для считывания термобарических параметров текучей среды и соединенный электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанные датчики размещены в теле НКТ и/или в теле ее соединительной муфты таким образом, чтобы чувствительный элемент датчиков находился приблизительно заподлицо с внутренней и/или с наружной стенкой НКТ или с внутренней и/или с наружной стенкой указанной муфты в зависимости от потребности измерения термобарических параметров текучей среды внутри НКТ и/или в затрубном пространстве скважины.

3. Нагреватель по п.2, характеризующийся тем, что в качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры.

4. Нагреватель по п.2, характеризующийся тем, что в качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры и датчики давления.

5. Нагреватель по п.2, или 3, или 4, характеризующийся тем, что в качестве датчиков для считывания термобарических параметров текучей среды используют кварцевые резонаторы.

6. Нагреватель по п.2, характеризующийся тем, что в качестве наземного измерительно-управляющего блока используют частотный электронный модуль управления.

7. Нагреватель по п.2, характеризующийся тем, что в качестве электропроводящей сигналопередающей линии связи используют нагревательный кабель, или кабельную линию, или одножильный геофизический кабель.

8. Нагреватель по п.7, характеризующийся тем, что в качестве электропроводящей сигналопередающей линии связи используют двухпроводную линию "токопроводящая жила - броня" кабеля.

9. Нагреватель по п.2, характеризующийся тем, что наземный измерительно-управляющий блок и электропроводящая сигналопередающая линия связи его с внутрискважинным измерительным блоком выполнены с возможностью одновременного считывания сигналов со всех указанных датчиков.

10. Нагреватель по п.2, характеризующийся тем, что все датчики для считывания термобарических параметров текучей среды соединены с наземным измерительно-управляющим блоком с обеспечением при работе постоянного непрерывного контакта при одном приемопередающем канале для всех указанных датчиков.

11. Нагреватель по п.2, характеризующийся тем, что наземный измерительно-управляющий блок выполнен в виде программируемого частотного электронного модуля управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем, микропроцессорный блок вычисления и жидкокристаллический дисплей.

Описание изобретения к патенту

Изобретение относится к области нефтедобычи, преимущественно к области оборудования скважин нагревательными кабелями, и может быть использовано в качестве оборудования для электропрогрева текучей среды в скважине с одновременным контролем распределения теплового поля и затрубного давления по стволу нефтедобывающих и нагнетательных скважин, в первую очередь осложненных отложениями солей и асфальтено-смолопарафиновых веществ (АСПВ), при обеспечении минимизации тепловых потерь.

Известен электрический нагреватель для прогрева текучей среды в скважине, состоящий из каротажного кабеля, на котором последовательно закреплены электронагреватель и датчик для считывания термического параметра текучей среды (термометр). Указанный нагреватель размещен внутри насосно-компрессорных труб (НКТ), которыми оборудована скважина, и предназначен, помимо прогрева текучей среды, еще и обеспечивать контроль за профилем притока текучей среды в скважину путем установления изменения ее температуры (путем снятия термограммы) (патент РФ №2194855, кл. Е 21 В 47/00 от 2001 г.).

Недостатком указанного известного нагревателя является недостаточная точность и надежность управления нагревом текучей среды в скважине, вследствие ограниченного участка снятия термограммы, да к тому же не на нагреваемом участке скважины, а ниже него. Кроме того, известный нагреватель предназначен только для использования в скважине, оборудованной электроцентробежным насосом, при других же способах добычи известный нагреватель применить невозможно.

Также известен электронагреватель для прогрева текучей среды в скважине, состоящий из электронагревателя, датчиков температуры, соединенных с наземным измерительным блоком (частотно-модуляционная система), и из трех герметичных цилиндров с размещенными между ними термоизоляционными экранами, при этом цилиндры размещены вдоль скважины, электронагреватель расположен в среднем цилиндре и в каждом из цилиндров установлен датчик температуры (патент РФ №2096772, кл. G 01 N 25/18 от 1996 г.).

Однако указанный известный электронагреватель не может быть использован в добывающей скважине ввиду больших геометрических размеров.

Известен ряд линейных нагревателей в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, токопроводящие жилы которого с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания (свидетельство РФ на полезную модель №10000, кл. Н 01 В 7/18 от 1998 г.; свидетельство РФ на полезную модель №14474, кл. Н 01 В 7/18 от 1999 г.). Указанные линейные нагреватели могут быть использованы при различных способах добычи.

Однако их недостатком является недостаточная точность процесса нагрева текучей среды в скважине и невозможность управления этим процессом.

Единый технический результат, достигаемый предлагаемыми вариантами изобретения, заключается в повышении точности и надежности управления нагревом текучей среды в скважине с различными способами добычи: фонтанной, при оборудовании штанговым или электроцентробежным насосом, за счет возможности контроля теплового поля скважины при одновременной простоте монтажа и эксплуатации.

Дополнительный технический результат, обеспечиваемый вторым вариантом изобретения, заключается в расширении объема получаемой информации о состоянии текучей среды одновременно в затрубном пространстве скважины, внутри НКТ и на наружной поверхности НКТ.

Указанный технический результат достигается предлагаемым автоматизированным саморегулирующимся линейным нагревателем для прогрева текучей среды в скважине, оборудованной насосно-компрессорными трубами НКТ, содержащим установленный в скважине снаружи НКТ линейный нагреватель в виде нагревательного кабеля или в виде кабельной линии, в состав которой входит нагревательный кабель, причем токопроводящие жилы указанного нагревателя с одного конца соединены друг с другом и изолированы, а с другого конца соединены с источником питания, наземный измерительно-управляющий блок и внутрискважинный измерительный блок, состоящий, по первому варианту, из одного датчика для считывания термобарических параметров текучей среды и соединенный электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанный датчик размещен в теле НКТ или в теле ее соединительной муфты таким образом, чтобы чувствительный элемент датчика находился приблизительно заподлицо с внутренней или с наружной стенкой НКТ или с внутренней или с наружной стенкой указанной муфты в зависимости от потребности измерения термобарических параметров текучей среды внутри НКТ или в затрубном пространстве скважины, а, по второму варианту, внутрискважинный измерительный блок состоит из датчиков для считывания термобарических параметров текучей среды, и соединен электропроводящей сигналопередающей линией связи с наземным измерительно-управляющим блоком, при этом указанные датчики размещены в теле НКТ и/или в теле ее соединительной муфты таким образом, чтобы чувствительный элемент датчиков находился приблизительно заподлицо с внутренней и/или с наружной стенкой НКТ или с внутренней и/или с наружной стенкой указанной муфты в зависимости от потребности измерения термобарических параметров текучей среды внутри НКТ и/или в затрубном пространстве скважины.

В преимущественном варианте выполнения в качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры.

В качестве датчиков для считывания термобарических параметров текучей среды используют датчики температуры и датчики давления.

В качестве датчиков для считывания термобарических параметров текучей среды используют кварцевые резонаторы.

В качестве наземного измерительно-управляющего блока используют частотный электронный модуль управления.

В качестве электропроводящей сигналопередающей линии связи используют нагревательный кабель, или кабельную линию, или одножильный геофизический кабель.

В качестве электропроводящей сигналопередающей линии связи используют двухпроводную линию «токопроводящая жила - броня» кабеля.

Наземный измерительно-управляющий блок и электропроводящая сигналопередающая линия связи его с внутрискважинным измерительным блоком выполнены с возможностью одновременного считывания сигналов со всех указанных датчиков.

Все датчики для считывания термобарических параметров текучей среды соединены с наземным измерительно-управляющим блоком с обеспечением при работе постоянного непрерывного контакта при одном приемо-передающем канале для всех указанных датчиков.

Наземный измерительно-управляющий блок может быть выполнен в виде программируемого частотного электронного модуля управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем, микропроцессорный блок вычисления и жидкокристаллический дисплей.

В настоящей заявке соблюдено требование единства изобретения, поскольку оба заявленных варианта предназначены для получения единого технического результата

Указанный технический результат достигается за счет следующего.

Благодаря дополнительному введению в конструкцию автоматизированного саморегулирующегося линейного нагревателя связанных между собой наземного измерительно-управляющего блока и внутрискважинного измерительного блока, состоящего из одного датчика (по первому варианту) или из нескольких датчиков (по второму варианту) для считывания термобарических параметров текучей среды, обеспечивается поддержание температуры добываемой текучей среды в заданных границах, оптимизация энергопотерь при путевом прогреве, возможность высокочастотного измерения и контроля теплового поля скважины.

Предлагаемое изобретение иллюстрируется чертежом, где приведен общий вид автоматизированного саморегулирующегося линейного нагревателя.

Заявляемый автоматизированный саморегулирующийся линейный нагреватель (далее - АСЛН) состоит из линейного нагревателя, выполненного, например, в виде кабельной линии 1, состоящей из низкотемпературного кабеля 2 и высокотемпературного - нагревательного кабеля 3, токопроводящие жилы с одного конца которого соединены между собой (например, в «звезду») и изолированы для образования концевой заделки 4. Другой конец кабеля соединен с источником питания 5. Кабельная линия 1 установлена снаружи НКТ 6. АСЛН также содержит наземный измерительно-управляющий блок 7, представляющий собой, например, программируемый частотный электронный модуль управления, и внутрискважинный измерительный блок 8, состоящий из одного или нескольких датчиков 9 для считывая термобарических параметров текучей среды 10. При этом в качестве датчика 9 можно использовать датчик температуры, например, высокотемпературный кварцевый термочувствительный резонатор марки РКТВ-206, а также датчик давления, например, кварцевый манометрический резонатор абсолютного значения марки РКМА-Р. Указанные датчики 9 предназначены для преобразования текущих значений температуры и давления в частоту, соединены с наземным измерительно-управляющим блоком 7 посредством кабельной линии 1 (может быть также соединен и посредством одножильного геофизического кабеля) и установлены в теле НКТ 6 и/или в теле ее соединительной муфты 11 таким образом, чтобы чувствительный элемент 12 датчика 9 находился приблизительно заподлицо с внутренней и/или с наружной стенкой НКТ 6 или с внутренней и/или с наружной стенкой соединительной муфты 11, в зависимости от потребности измерения параметров текучей среды 10 внутри НКТ 6 и/или в затрубном пространстве 13 скважины. При наличии одного датчика 9 его устанавливают в теле НКТ 6 или в теле ее соединительной муфты 11 таким образом, чтобы чувствительный элемент 12 датчика 9 находился приблизительно заподлицо с внутренней или с наружной стенкой НКТ 6 или с внутренней или с наружной стенкой соединительной муфты 11, в зависимости от потребности измерения параметров текучей среды 10 внутри НКТ 6 или в затрубном пространстве 13 скважины.

Работает предлагаемый автоматизированный саморегулирующийся линейный нагреватель (АСЛН) следующим образом.

Непосредственно у скважины или на кабельном участке производится монтаж кабельной линии 1 из низкотемпературного кабеля 2 и нагревательного кабеля 3 путем их герметичного соединения друг с другом. После определения необходимой длины кабельной линии 1 производят концевую заделку 4 его свободного конца посредством выполнения соединения токопроводящих жил, например, в «звезду», и ее изоляцию. Кроме того, от токопроводящей жилы и брони нагревательного кабеля 3 кабельной линии 1 выполняют герметичные отводы для подключения датчиков 9 (кварцевых резонаторов).

Перед спуском кабельной линии 1 в скважину производят наземные испытания изготовленной концевой заделки 4 на специальном стенде, на котором моделируют скважинные условия, а именно: наличие агрессивной пластовой среды, температура +30-100°С, давление 20-23 МПа. Время испытаний составляет 18 часов. В случае отсутствия электрического пробоя кабельной линии 1 после испытаний, ее спускают в скважину путем крепления хомутами к наружной поверхности насосно-компрессорных труб НКТ 6. При этом в теле соединительной муфты 11 (и/или в теле НКТ 6) устанавливают датчики 9 таким образом, чтобы чувствительный элемент 12 датчика 9 находился приблизительно заподлицо с внутренней и/или с наружной стенкой указанной муфты 11 (или с внутренней и/или с наружной стенкой НКТ 6) в зависимости от потребности измерения параметров текучей среды 10 внутри НКТ 6 и/или в затрубном пространстве 13 скважины.

После спуска в скважину всей кабельной линии 1. второй свободный конец ее подключают через наземный измерительно-управляющий блок 7 к источнику питания 5.

При подачи тока высокого напряжения происходит нагрев нагревательного кабеля 3 кабельной линии 1, который в свою очередь изменяет параметры текучей среды 10 внутри НКТ 6 и/или в затрубном пространстве 13 скважины.

Производят измерение параметров текучей среды 10 внутри НКТ 6 и в затрубном пространстве 13 скважины чувствительным элементом 12 датчика 9. Благодаря тому, что чувствительный элемент 12 датчика 9 располагается заподлицо с внутренней или с внешней стенкой муфты 11 (или с внутренней и/или с наружной стенкой НКТ 6), производится замер температуры и давления пограничного слоя текучей среды 10, где в первую очередь происходит отложение АСПВ. При помощи датчика 9 сигнал попадает на наземный измерительно-управляющий блок 7, например, программируемый частотный электронный модуль управления, который включает в себя генератор шума, перестраиваемый входной резонансный усилитель, микропроцессорный блок управления нагревательным кабелем 3, микропроцессорный блок вычисления и жидкокристаллический дисплей.

При этом предварительно в память измерительно-управляющего блока 7 заносятся граничные значения температуры (а можно и давления, в зависимости от требуемых параметров) текучей среды 10 внутри колонны НКТ, при которых следует осуществлять включение - выключение АСЛН. Если значения температуры, полученные с определенных кварцевых резонаторов (датчиков 9), находятся в пределах или ниже запрограммированных указанных граничных, то измерительно-управляющий блок 7 вырабатывает сигнал на подключение кабельной линии 1 к источнику питания 5. Если значения температуры, полученные с определенных кварцевых резонаторов (датчиков 9) находятся выше граничных, то АСЛН не подключается к источнику питания 5, а замер температуры будет непрерывно производится до тех пор, пока значения температуры не войдут в пределы граничных и только после этого измерительно-управляющий блок 7 вырабатывает сигнал на подключение кабельной линии 1 к источнику питания 5. Указанные граничные значения могут быть также заданы и для параметров давления.

Поступающая при этом информация обрабатывается с помощью микропроцессорного блока вычисления и поступает в измерительно-управляющий блок 7. Далее включается генератор шума, который вырабатывает сигнал с равномерно распределенным спектром в заданном диапазоне частот и, в свою очередь возбуждает чувствительные элементы 12 датчиков 9 на частотах, соответствующих текущим значениям температуры и/или давления (в зависимости от назначения датчиков 9). Частоты задаются при помощи перестраиваемого входного резонансного усилителя и микропроцессорного блока вычисления, в котором заложен алгоритм вычисления численного значения частот. Измерение и поддержание параметров производится до тех пор, пока показания не будут соответствовать заданным граничным значениям.

Предлагаемый автоматизированный саморегулирующийся линейный нагреватель имеет следующие преимущества перед известными:

- позволяет измерять температуру текучей среды как внутри НКТ от забоя до устья, так и взатрубном пространстве;

- позволяет более точно управлять процессом электропрогрева текучей среды в скважине, т.к. осуществление контроля за параметрами этой среды производится в пристенном, пограничном слое у НКТ и в большом интервале, где наиболее вероятны отложения АСПВ;

- благодаря тому, что измерительно-управляющий блок АСЛН является программируемым, то и сам АСЛН является саморегулирующимся в зависимости от температуры текучей среды, что обеспечивает минимизацию тепловых потерь и оптимизацию энергосбережения;

- характеризуется большей надежностью, вследствие использования резонаторов на тех частотах, на которых на них не воздействует ток высокого напряжения;

- характеризуется простотой монтажа и эксплуатации, т.к. в частности, в основных узлах используются сборные блоки и печатные платы;

- характеризуется высокой точностью измерения температуры и давления за счет применяемых материалов и изделий;

- может быть использован в скважине с любым способом добычи: фонтанной, при оборудовании скважины штанговым или электроцентробежным насосом.

Класс E21B36/04 с использованием электронагревателей

устройство для тепловой обработки газогидратных залежей -  патент 2516303 (20.05.2014)
способ электронагрева нефтескважины нефтедобывающего комплекса и устройство для его реализации -  патент 2514332 (27.04.2014)
лубрикатор геофизический с защитой от гидратообразования -  патент 2509871 (20.03.2014)
устройство теплообменника для удаления парафина и смол из нефти перед ее транспортировкой -  патент 2501936 (20.12.2013)
система, способ и устройство создания тлеющего электрического разряда -  патент 2481463 (10.05.2013)
способ и устройство для добычи в естественном залегании битумов или особо тяжелой нефти -  патент 2465441 (27.10.2012)
способ термической обработки in situ с использованием нагревательной системы с замкнутым контуром -  патент 2460871 (10.09.2012)
способ нагрева потока жидкости в нефтегазовой скважине и установка для его осуществления -  патент 2455461 (10.07.2012)
устройство тепловой обработки призабойной зоны скважин - электропарогенератор -  патент 2451158 (20.05.2012)
способ нагрева нагнетательной жидкости в стволе скважины для вытеснения нефти из пласта -  патент 2450121 (10.05.2012)

Класс E21B37/00 Способы или устройства для очистки буровых скважин

Класс H05B3/56 нагревательные кабели 

кабель нагревательный коаксиальный трехфазный -  патент 2516219 (20.05.2014)
нагревательный кабель -  патент 2511111 (10.04.2014)
соединитель для трубопровода для текучей среды и трубопровод для текучей среды -  патент 2502009 (20.12.2013)
нагревательный кабель -  патент 2496280 (20.10.2013)
цепь управления нагревательным проводом и способ управления нагревательным элементом -  патент 2491795 (27.08.2013)
обогреваемое воздухоочистительное устройство для судовых энергетических установок -  патент 2485010 (20.06.2013)
способ нагрева потока жидкости в нефтегазовой скважине и установка для его осуществления -  патент 2455461 (10.07.2012)
саморегулируемый кабель, характеризующийся положительным ткс и генерирующий различную электрическую мощность, соединитель для такого кабеля, устройство, содержащее такие кабель и соединитель, и применение указанного устройства -  патент 2450494 (10.05.2012)
материал и нагревательный кабель -  патент 2402182 (20.10.2010)
саморегулирующийся электрический нагревательный кабель -  патент 2358416 (10.06.2009)
Наверх