способ повышения бактерицидной активности пероксида водорода, применяемого для обеззараживания питьевой воды

Классы МПК:C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой
C02F1/72 окислением
Автор(ы):, , , ,
Патентообладатель(и):Ажгиревич Артем Иванович (RU)
Приоритеты:
подача заявки:
2005-06-14
публикация патента:

Изобретение относится к методам подготовки питьевой воды при помощи пероксида водорода, активность которого повышается введением гетерогенных катализаторов, и может быть использовано для обеззараживания питьевой воды. Способ повышения бактерицидной активности пероксида водорода, применяемого для очистки питьевой воды, отличается тем, что дополнительно вводят катализатор, полученный смешением растертого в порошок гопкалита, содержащего 60 мас.% диоксида марганца и 40 мас.% оксида меди, с порошком одного из оксидов, выбранных из группы, включающей оксид цинка, оксид железа (III) и оксид кобальта (III), при массовом соотношении гопкалит:оксид металла в пересчете на ион металла, равном (5-10):1, добавлением бентонитовой глины в количестве 10 мас.% от массы смеси гопкалита и оксида металла, последующим увлажнением до пастообразного состояния, подсушиванием и формованием в виде таблеток или гранул. Технический результат: 1) усиление бактерицидной активности пероксида водорода посредством введения гетерогенного катализатора на основе гопкалита, модифицированного доступными и относительно недорогими добавками; 2) предотвращение вторичного бактериального заражения воды в течение длительного времени (около месяца). 1 табл.

Формула изобретения

Способ повышения бактерицидной активности пероксида водорода, применяемого для очистки питьевой воды, путем введения в воду гетерогенного катализатора на основе гопкалита, отличающийся тем, что используют катализатор, полученный смешением растертого в порошок гопкалита, содержащего 60 мас.% диоксида марганца и 40 мас.% оксида меди, с порошком одного из оксидов, выбранных из группы, включающей оксид цинка, оксид железа (III) и оксид кобальта (III), при массовом соотношении гопкалит: оксид металла в пересчете на ион металла, равном (5-10):1, добавлением бентонитовой глины в количестве 10% от массы смеси гопкалита и оксида металла, последующим увлажнением до пастообразного состояния, подсушиванием и формованием в виде таблеток или гранул.

Описание изобретения к патенту

Изобретение относится к методам подготовки питьевой воды, при которых улучшение ее химических и бактериологических характеристик проводится при помощи пероксида водорода, активность которого повышается введением гетерогенных катализаторов. Оно может быть использовано для обеззараживания воды, предназначенной для питьевых целей, а также подготовки воды, используемой для приготовления напитков и продуктов питания.

Известен способ очистки сточных вод от красителей, включающий обработку воды в реакторе порошком пероксида кальция или его суспензией в присутствии катализатора в виде порошка или раствора, содержащего соединения меди и марганца, например гопкалита (RU 2031858, С 02 F 1/72, 1995 г.). Указанный метод, однако, не пригоден для обеззараживания питьевой воды, поскольку используемые реагенты в виде взвеси могут оставаться в воде после ее отстаивания и удаления осадка. Тем самым имеют место непроизводительные расходы реагентов, а их извлечение из воды потребует усложнения технологической схемы и ухудшения экономических показателей процесса обеззараживания.

Известен способ обеззараживания воды, заключающийся в совместном действии пероксида водорода и 0,05-1,0 мг/л ионов меди (Савлук И.П. и др. Антимикробные свойства меди // Химия и технология воды, 1986, т.8, №6, с.с.65-67). При этом медь усиливает антибактериальные свойства пероксида водорода и в то же время является катализатором разложения последнего, что предотвращает попадание пероксида водорода в природные водоемы. Однако эффективность этого метода недостаточно высока, кроме того, рекомендуемая концентрация ионов меди практически достигает установленной предельно допустимой концентрации меди для питьевой воды - 1 мг/л (ГОСТ 2874-82. Вода питьевая. Гигиенические требования и контроль за качеством. - М.: Изд-во стандартов, 1984. - 9 с.).

Наиболее близким аналогом заявленного изобретения по назначению, совокупности существенных признаков и достигаемому результату является известный из RU 2213705, С 02 F 9/04, 2003 способ обеззараживания питьевой воды, включающий двухкратную обработку ее пероксидом водорода с введением (после выдержки 0,5-1 часа) гетерогенного катализатора. При этом указанный катализатор получают путем смешения растертых в порошок гранул гопкалита с частицами мелкораздробленного металлического серебра размером не более 0,05 мм при массовом соотношении гопкалит:серебро, равном 1000:1, последующего добавления воды до получения пасты, ее подсушивания при температуре 100-110°С и формирования на прессе в виде таблеток. Указанный катализатор резко увеличивает бактерицидную активность пероксида водорода, а также обеспечивает длительную (около месяца) устойчивость обработанной воды к повторному бактериальному загрязнению. Недостатками являются: 1) необходимость использования металлического серебра (на 1000 кг катализатора - 1 кг чистого серебра); 2) необходимость дробления серебра до относительно мелких частиц, что требует больших энергозатрат, а также способствует непроизводительным потерям этого металла.

Технической задачей, на решение которой направлено настоящее изобретение, являлось: 1) усиление бактерицидной активности пероксида водорода посредством введения гетерогенного катализатора на основе гопкалита, модифицированного доступными и относительно недорогими добавками; 2) предотвращение вторичного бактериального заражения воды в течение длительного времени (около месяца).

Поставленная задача решается тем, что способ повышения бактерицидной активности пероксида водорода, применяемого для очистки питьевой воды, заключается во введении в воду гетерогенного катализатора на основе гопкалита и отличается от наиболее близкого аналога тем, что используют катализатор, полученный смешением растертого в порошок гопкалита, содержащего 60 мас.% диоксида марганца и 40 мас.% оксида меди, с порошком одного из оксидов, выбранных из группы, включающей оксид цинка, оксид железа (III) и оксид кобальта (III), при массовом соотношении гопкалит:оксид металла в пересчете на ион металла, равном (5÷10):1, добавлением бентонитовой глины в количестве 10 мас.% от массы смеси гопкалита и оксида металла, последующим увлажнением до пастообразного состояния, подсушиванием и формованием в виде таблеток или гранул.

Катализаторы разложения пероксида водорода способствуют появлению в воде сверхактивных в бактерицидном отношении радикалов ОН (через короткое время в результате химической реакции они превращаются в воду). Нашими исследованиями было установлено, что эффективным катализатором данного процесса является гопкалит, модифицированный ионами цинка (источником которых может служить, например, оксид цинка), ионами железа Fe+ (источником которых может служить, например, оксида железа), а также ионами Со3+ (источником которых может служить, например, оксид кобальта Со2О3). Кроме того, обработка воды указанными веществами придает воде длительную устойчивость к повторному бактериальному заражению.

Для получения гетерогенного катализатора указанную смесь увлажняют до получения пасты, пасту подсушивают при 105-110°С в течение 1-1,5 часа и формуют в виде гранул или таблеток.

Количество вводимого катализатора обычно составляет 1,0-1,5 мг/л, время контактирования катализатора с обеззараживаемой водой после введения в нее пероксида водорода 1-1,5 часа.

Совместная обработка воды пероксидом водорода и предлагаемым гетерогенным катализатором на порядок (по сравнению с использованием только пероксида водорода) увеличивает бактерицидную активность пероксида водорода, а также придает обработанной воде устойчивость к вторичному бактериальному загрязнению.

Ниже приведены примеры осуществления предложенного способа.

Исходная вода имела следующие показатели: температура 20°С, рН 7,1, содержание взвешенных веществ 0,52 мг/л, цветность 20 град, окисляемость перманганатная по кислороду 20 мг/л, коли-индекс (содержание бактерий Е.coli) - 103 особей/л. Количество вводимого пероксида во всех опытах составляло 300 мг/л, количество катализатора 1 мг/л, время контактирования с катализатором 1 час. Катализатор готовили смешением мелко раздробленного порошка гопкалита, содержащего 60 мас.% диоксида марганца и 40 мас.% оксида меди (размер частиц 0,01-0,04 мм), с порошком окислов металлов в массовом соотношении, указанном в примерах, с последующим добавлением бентонитовой глины в количестве 10 мас.% от массы смеси гопкалита с оксидом металла. Полученную композицию увлажняли дистиллированной водой до пастообразного состояния. Полученную пасту подсушивали при температуре 110°С и формовали на прессе в виде таблеток диаметром 15 мм и высотой 7 мм.

Пример 1. В исходную воду вводили только пероксид водорода. Первый анализ проводили через 1 час, последующие анализы на содержание микроорганизмов - через каждые сутки (аналогичная методика бактериологического анализа в примерах 2-7).

Пример 2. В качестве катализатора использовали смесь гопкалита с порошком оксида цинка ZnO в соотношениях: а) 5:1 (в расчете на ионы цинка) и б) 10:1.

Пример 3. В качестве катализатора использовали смесь гопкалита с порошком оксида железа Fe2О3 в соотношениях: а) 5:1 (в расчете на ионы железо) и б) 10:1.

Пример 4. В качестве катализатора использовали смесь гопкалита с порошком оксида кобальта Со2О3 в соотношениях: а) 5:1 (в расчете на ионы кобальта) и б) 10:1.

Пример 5. В качестве катализатора служил известный из RU 2213705 образец с массовым соотношением гопкалит:металлическое серебро, равным 1000:1 соответственно.

Примечания: для приготовления катализаторов применяли реактивы заводского изготовления в виде порошков марки "чда". Вода согласно ГОСТ 2874-82 "Вода питьевая" считается санитарно безопасной, если число бактерий не превышает 3 особей/л.

Результаты испытаний приведены в таблице.

Согласно анализу приведенных в таблице данных замена металлического серебра на любой ингредиент (примеры 2-4) привела к резкому возрастанию бактерицидной активности пероксида по сравнению с применением только пероксида водорода (пример 1) и существенно увеличила устойчивость обработанной воды к повторному (из окружающей среды) бактериальному загрязнению. Таким образом, установлена возможность замены в катализаторе дефицитного и дорогостоящего серебра.

Таблица

Результаты испытаний бактерицидных свойств пероксида водорода индивидуально и в присутствии гетерогенных катализаторов
Пример, № (вводимый ингредиент) Соотношение гопкалит: добавка Число бактерий в обработанной воде по истечении
1 час1 сутки 5 суток10 суток20 суток30 суток
№1только пероксид

водорода

(300 мг/л)
2010 2064 102300
№2 (ZnO)а) 5:1

б) 10:1
7

8
2

3
3

3
4

2
3

4
4

5
№3 (Fe2O3) а) 5:1

б) 10:1
2

3
не обн.

2
не обн.

1
2

3
2

3
3

3
№4 (Со2O3) а) 5:1

б) 10:1
3

4
12не обн.

2
2

3
3

3
4

4
№5(известный из RU

2213705)
гопкалит - серебро

(1000:1)
32 234 4

Класс C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой

способ консервации водных препаратов минеральных веществ, консервированные водные препараты минеральных веществ и применение консервирующих соединений в водных препаратах минеральных веществ -  патент 2529816 (27.09.2014)
способ противодействия биологическому загрязнению текучих сред, используемых для обработки подземных скважин -  патент 2527779 (10.09.2014)
способ обеззараживания воды -  патент 2524944 (10.08.2014)
стабилизированная биоцидная композиция -  патент 2522137 (10.07.2014)
способ обеззараживания воды и оценки его эффективности -  патент 2520857 (27.06.2014)
способ дообработки питьевой воды -  патент 2510887 (10.04.2014)
способ инактивации вирусов в водных средах -  патент 2506232 (10.02.2014)
способ утилизации продувочной воды циркуляционной системы -  патент 2502683 (27.12.2013)
состав для дезинфекции воды -  патент 2501741 (20.12.2013)
дезинфицирующее средство для обеззараживания воды -  патент 2499771 (27.11.2013)

Класс C02F1/72 окислением

способ обеззараживания воды -  патент 2524944 (10.08.2014)
установка безреагентной очистки и обеззараживания воды -  патент 2524601 (27.07.2014)
способ очистки природной воды -  патент 2514963 (10.05.2014)
способ очистки воды -  патент 2502682 (27.12.2013)
способ разрушения аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в отходах производства -  патент 2500629 (10.12.2013)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
способ очистки сточных вод от фенолов -  патент 2476384 (27.02.2013)
способ получения гранулы покрытого окисляющего вещества, полученная гранула и ее применение -  патент 2471848 (10.01.2013)
способ каталитического окисления аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в водном растворе -  патент 2460693 (10.09.2012)
Наверх