оптический газоанализатор

Классы МПК:G01N21/61 бездисперсные газоанализаторы
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Промгаз" ОАО "Промгаз" (RU)
Приоритеты:
подача заявки:
2004-12-21
публикация патента:

Изобретение относится к области защиты среды обитания человека от техногенных катастроф чрезвычайных ситуаций. В оптическом газоанализаторе, содержащем перестраиваемый по частоте полупроводниковый лазер с устройством ввода оптического излучения в моноволоконно-оптическую линию, измерительную ячейку и оптоэлектронный преобразователь с устройством регистрации сигнала, оптическая схема измерительной ячейки содержит вогнутое сферическое или параболическое зеркало, оптически сопряженное с выходным (входным) торцом моноволокна так, что названный торец и его изображение полностью совпадают, а разделение оптического излучения, транслируемого моноволокном к измерительной ячейке и в обратном направлении к оптоэлектронному преобразователю, осуществляется посредством тонкой плоскопараллельной пластины, установленной под углом, большим, чем угол полного внутреннего отражения. Техническим результатом является получение достоверных результатов при определении объемной концентрации любой заявленной к анализу компоненты в газовой смеси, заполняющей объем измерительной ячейки, а также повышение точности измерений и достижение взрывобезопасности. 1 с. и 1 з.п. ф-лы, 2 ил. оптический газоанализатор, патент № 2278371

оптический газоанализатор, патент № 2278371 оптический газоанализатор, патент № 2278371

Формула изобретения

1. Оптический газоанализатор, содержащий перестраиваемый по частоте полупроводниковый лазер с устройством ввода оптического излучения в моноволокно, волоконно-оптическую линию, измерительную ячейку и оптоэлектронный преобразователь с устройством регистрации сигнала, отличающийся тем, что оптическая схема измерительной ячейки содержит вогнутое сферическое или параболическое зеркало, оптически сопряженное с выходным или входным торцом моноволокна так, что названный торец и его изображение полностью совпадают, а разделение оптического излучения, транслируемого моноволокном к измерительной ячейке и в обратном направлении к оптоэлектронному преобразователю, осуществляется посредством тонкой плоскопараллельной пластины, установленной под углом, большим, чем угол полного внутреннего отражения.

2. Оптический газоанализатор по п.1, отличающийся тем, что измерительная ячейка выполнена в виде оптического волновода - алюминиевой тонкостенной трубки с полированной внутренней поверхностью, свернутой в форме цилиндрической пружины или плоской спирали.

Описание изобретения к патенту

Изобретение относится к области защиты среды обитания человека от техногенных катастроф чрезвычайных ситуаций, вызванных концентрационным превышением взрывоопасных примесей в воздухе. К объектам защиты могут относиться как необслуживаемые персоналом технологические объемы, производственные помещения на предприятиях угледобывающей, нефтегазоперерабатывающей промышленности, так и помещения (объемы), предназначенные для постоянного или периодического пребывания человека - жилые дома, автотранспорт, городские подземные коммуникации и другие объекты.

Известное устройство /1/, позволяющее определять концентрацию взрывоопасных примесей в воздухе, содержит источник оптического излучения с непрерывным распределением спектральной плотности, например лампу накаливания или силитовый стержень (глобар), измерительную ячейку, содержащую газовую смесь - собственно объект газоанализа, и спектрофотометр. Спектрофотометрия газовой смеси по характерным полосам селективного поглощения оптического излучения позволяет определить концентрацию любой из заявленных к анализу компонент, присутствующих в измерительной ячейке.

Недостатком устройства является наличие неучтенного, неоднородного пространственного распределения компонентов в объеме, что приводит к снижению точности измерений.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является газоанализатор /2/, разработанный в Центре естественно-научных исследований ИОФАН, в лаборатории прикладной лазерной спектроскопии. Газоанализатор содержит источник оптического излучения с устройством для амплитудной модуляции и оптическим элементом в виде набора плоских зеркал, обеспечивающих ввод излучения в моноволокно, и оптоэлектронный преобразователь, соединенный кабелем с регистрирующим устройством.

Недостатком устройства является невозможность получения, наряду с качественными, количественных результатов анализа газовой смеси в тестируемом объеме.

Задача изобретения заключается в получении достоверных результатов при определении объемной концентрации любой заявленной к анализу компоненты в газовой смеси, заполняющей объем измерительной ячейки, а также повышение точности измерений и взрывобезопасности.

Поставленная задача решается следующим образом. В оптическом газоанализаторе, содержащем перестраиваемый по частоте полупроводниковый лазер с устройством ввода оптического излучения в волоконно-оптическую линию, измерительную ячейку и оптоэлектронный преобразователь с устройством регистрации сигнала, оптическая схема измерительной ячейки содержит вогнутое сферическое или параболическое зеркало, оптически сопряженное с выходным или входным торцом моноволокна так, что названный торец и его изображение полностью совпадают, а разделение оптического излучения, транслируемого моноволокном к измерительной ячейке и в обратном направлении к оптоэлектронному преобразователю, осуществляется посредством тонкой плоскопараллельной пластины, установленной под углом, большим, чем угол полного внутреннего отражения.

Оптический газоанализатор содержит измерительную ячейку, выполненную в виде оптического волновода - алюминиевой тонкостенной трубки с полированной внутренней поверхностью, свернутой в форме цилиндрической пружины или плоской спирали.

Предложенная структурная схема оптического газоанализатора представлена на фиг 1, на фиг.2 - другой вариант ее исполнения. В состав газоанализатора входят источник оптического излучения - полупроводниковый лазер 1 с перестраиваемой частотой и устройством ввода оптического излучения в моноволокно с торцами 2 и 3, (волоконно-оптическая линия может быть составлена из одного или двух моноволокон), датчик - измерительная ячейка, оптоэлектронный преобразователь 4, устройство для регистрации сигнала 5.

Моноволокно может быть использовано как для трансляции к измерительной ячейке зондирующего оптического излучения, введенного в его торец, так и для трансляции оптического излучения, ослабленного в результате поглощения содержащейся в газовой смеси заявленной к анализу компонентой (широкий ряд предельных и непредельных углеводородов, имеющих соответственно формулы СnН2n+2 и СnН2n ), к оптоэлектронному преобразователю.

Как показано на схеме, поток оптического зондирующего излучения проходит через тонкую плоскопараллельную пластину 6, вводится в торец 2 моноволокна, выходной торец которого 3 расположен на оси вогнутого сферического или параболического зеркала 7 между фокусом и двойным фокусом так, что поток излучения, вышедший из торца моноволокна в пределах апертурного угла, отражается от вогнутой поверхности и вводится в моноволокно в обратном направлении таким образом, что торец 3 и его изображение оказываются полностью совмещеными. Далее оптическое излучение отражается от пластины 6, установленной под углом, большим, чем угол полного внутреннего отражения, и поступает на оптоэлектронный преобразователь 4, сигнал которого регистрируется устройством 5. Таким образом, весь объем измерительной ячейки, ограниченный конической поверхностью с вершиной в торце моноволокна 3 и поверхностью вогнутого зеркала 7, оказывается заполненным оптическим излучением, проходящим тестируемый объем газовой смеси дважды, в прямом и обратном направлениях. Реально диаметр моноволокна может составлять величину от 0,1 до 0,5 мм, апертурный угол около 30°, диаметр вогнутого зеркала около 100 мм. Объем измерительной ячейки, очевидно, будет определяться фокусным расстоянием зеркала. Моноволокно выполнено на основе кварцевого стекла марки КИ, обладающего приемлемым оптическим пропусканием до оптический газоанализатор, патент № 2278371 max = 4 мкм, плоскопараллельная пластина изготовлена, например, из флюорита CaF2.

Для определения концентрации, например, метана в газовой смеси метан-воздух частота полупроводникового лазера устанавливается по табулированному (справочному) значению экстремума полосы оптического поглощения связи С-Н оптический газоанализатор, патент № 2278371 x, и регистрируется сигнал оптоэлектронного преобразователя. Затем частота перестраивается так, что новое значение оптический газоанализатор, патент № 2278371 0 смещается за пределы полосы поглощения, и регистрируется второе значение сигнала. Концентрация метана определяется как разность величин зарегистрированных сигналов с коэффициентом пропорциональности, численное значение которого определяется при градуировке газоанализатора.

Оптический газоанализатор, выполненный по схеме, представленной на фиг.2, содержит два моноволокна. Объем измерительной ячейки представляет собой объем волновода 12, выполненного на основе тонкостенной металлической трубки, например из алюминия, диаметром 10...20 мм, с полированной внутренней поверхностью (на схеме показаны только входной и выходной торцы трубки) и свернутой в виде цилиндрической пружины или плоской спирали. Принцип заполнения оптическим излучением объема измерительной ячейки - многократное отражение полированной внутренней поверхностью волновода 12 любого из лучей поступающего на вход волновода 12 потока зондирующего оптического излучения из выходного торца 9 моноволокна. Оптическое излучение, прошедшее через газовую смесь, заполняющую волновод 12, фокусируется объективом 13 на торец 11 моноволокна и транслируется к оптоэлектронному преобразователю 4 с регистрирующим устройством 5.

Необходимо отметить, что длина оптического пути даже для аксиального луча оптического излучения, введенного в волновод 12, может в 10 и более раз превышать длину этого волновода. Увеличение оптического пути для каждого луча потока оптического излучения, с учетом равномерного заполнения объема волновода излучением, позволяет определять даже «следовые» концентрации заявленной к анализу компоненты в газовой смеси, заполняющей объем волновода. Следует отметить также минимальные требования к настройке оптической системы измерительной ячейки предлагаемого газоанализатора.

Источники информации

1. Гладышев А.В., Беловолов М.И. и др. Непрерывно перестраиваемый диодный лазер на длину волны 1,52 мкм для целей газоанализа. Квантовая электроника, т.35. (3), с.241-245.

2. Березин А.Г., Ершов О.В., Шаповалов Ю.П. Мобильный высокочувствительный детектор метана на основе диодного лазера ближнего ИК-диапазона. Квантовая электроника, т.33 (8), 2003, с.721-724 (прототип).

Класс G01N21/61 бездисперсные газоанализаторы

газоанализатор -  патент 2528129 (10.09.2014)
инфракрасный газоанализатор -  патент 2523741 (20.07.2014)
способ измерения содержания газов в атмосферном воздухе с использованием спектров рассеянного солнечного излучения -  патент 2463581 (10.10.2012)
способ определения загрязнения атмосферы мегаполисов вредными газами -  патент 2460059 (27.08.2012)
способ определения концентраций газовых компонентов слоя атмосферы на границе с гидросферой -  патент 2438115 (27.12.2011)
способ дистанционного измерения концентрации газов в атмосферном воздухе -  патент 2431131 (10.10.2011)
способ измерения концентрации газов в атмосферном воздухе -  патент 2425358 (27.07.2011)
оптический абсорбционный газоанализатор -  патент 2421709 (20.06.2011)
способ комплексного контроля людей на пунктах пропуска -  патент 2396537 (10.08.2010)
способ одновременного определения концентрации молекул со и co2 в газообразной среде и устройство для одновременного определения концентрации молекул со и co2 в газообразной среде -  патент 2384836 (20.03.2010)
Наверх