способ исследования динамических свойств вращающегося ротора

Классы МПК:G01M13/00 Испытание деталей машин
Автор(ы):, , ,
Патентообладатель(и):Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") (RU),
Открытое акционерное общество "Уфимское моторостроительное производственное объединение" (ОАО "УМПО") (RU)
Приоритеты:
подача заявки:
2004-04-29
публикация патента:

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют путем изменения упругих свойств его опоры и измерения прогибов вала и частоты вращения ротора. При достижении частоты вращения ротора, составляющей 0,85...0,9 от критической, прикладывают к ротору осевую нагрузку, а при достижении прогиба, соответствующего частоте вращения, составляющей 0,85...0,9 от критической, снимают осевую нагрузку. Осуществление изобретения позволяет уменьшить динамические прогибы роторов ГТД и вибрационные нагрузки на опоры. 2 ил. способ исследования динамических свойств вращающегося ротора, патент № 2273836

способ исследования динамических свойств вращающегося ротора, патент № 2273836 способ исследования динамических свойств вращающегося ротора, патент № 2273836

Формула изобретения

Способ исследования динамических свойств вращающегося ротора, например, газотурбинного двигателя путем изменения упругих свойств его опоры и измерения прогибов и частоты вращения ротора, отличающийся тем, что при достижении частоты вращения ротора, составляющей 0,85...0,9 критической, прикладывают к ротору осевую нагрузку, а при достижении прогиба, соответствующего частоте вращения 1,1...1,2 критической, снимают осевую нагрузку.

Описание изобретения к патенту

Изобретение относится к области турбомашиностроения, а именно к способам снижения вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами.

Известен способ исследования динамических свойств вращающегося ротора путем изменения упругих свойств его опоры и измерения прогибов частоты вращения ротора [Н.В.Григорьев «Нелинейные колебания элементов машин и сооружений». МАШГИЗ. Москва, 1961. Стр. 100...110].

При реализации данного способа измеряется величина эксцентриситета ротора. Производится замер прогибов ротора, работающего на жестких опорах как при прямом, так и при обратном ходах. На основании этих замеров строится кривая зависимости прогибов от частоты вращения ротора. Затем одна из жестких опор демонтируется и заменяется нелинейным демпфером. Снова замеряются прогибы ротора как при прямом, так и при обратном ходах.

Указанным способом невозможно изменить упругие свойства опоры непосредственно в процессе работы установки. Для осуществления указанного способа необходимо произвести замену опоры на нелинейный демпфер, что предполагает прекращение работы ротора, изменение конструкции ротора и наличие двух различных опор, что весьма дорогостояще для авиационных ГТД.

Задачей изобретения является снижение уровня вибраций турбомашины, оборудованной упругими опорами в процессе ее работы.

Указанная задача решается тем, что в способе исследования динамических свойств вращающегося ротора, например газотурбинного двигателя, путем изменения упругих свойств его опоры и измерения прогибов и частоты вращения ротора, при достижении частоты вращения ротора, составляющей 0,85...0,9 от критической, прикладывают к ротору осевую нагрузку, а при достижении прогиба, соответствующего частоте вращения 1,1...1,2 от критической, снимают осевую нагрузку.

Такое осуществление способа позволяет непосредственно в процессе работы ГТД изменять податливость нелинейной опоры, что значительно снижает динамические прогибы роторов и вибрационные нагрузки на опоры.

Необходимость приложения осевой нагрузки к ротору при достижении частоты его вращения, составляющей 0,85...0,9 от критической частоты вращения (nкр) объясняется тем, что на частоте вращения свыше 0,9 от nкр резко возрастают прогибы ротора, приводящие к повышенным вибрациям турбомашины. До частоты вращения 0,85 от nкр величина прогибов ротора имеет допустимые значения и изменение амплитудно-частотной характеристики (АЧХ) ротора путем приложения к ротору осевой нагрузки не имеет смысла.

Снятие осевой нагрузки при частоте вращения ротора, равной 1,1...1,2 от nкр обусловлено тем, что при частоте вращения ротора более 1,2 от nкр, АЧХ ротора с приложенной осевой нагрузкой и АЧХ ротора без приложенной осевой нагрузки сходны по своим свойствам, а при частоте вращения ротора меньше 1,1 от nкр имеют место быть большие прогибы ротора, приводящие к повышенным вибрациям турбомашины.

На фиг.1 показана принципиальная схема установки для реализации предложенного способа,

на фиг. 2 - амплитудно-частотные характеристики (АЧХ) ротора при различных значениях податливости опоры с нелинейным демпфером: кривая 1 - АЧХ ротора при значении критической частоты вращения = nкр (при отсутствии осевой нагрузки); кривая 2 - АЧХ ротора при значение критической частоты вращения = n' кр (с приложенной осевой нагрузкой); кривая 3 - АЧХ ротора в результате реализации данного способа.

Ротор ГТД содержит вал 1 с диском 2, установленный на жесткую опору 3, и нелинейную опору 4. К диску примыкает емкость 5, заполненная воздухом, соединенная с баллоном со сжатым воздухом 6 посредством клапана 7. Последний имеет обратную связь 8 с валом 1. Для замера прогибов ротора жесткая опора 3 снабжена датчиком виброперемещений 9.

Способ осуществляют следующим образом. Производят запуск ГТД и экспериментальным путем измеряют значение критической частоты вращения nкр при отсутствии осевой нагрузки на нелинейную опору 4, а также строят АЧХ ротора (кривая 1 на фиг.2). При последующем запуске при достижении значительных прогибов ротора, соответствующих частоте вращения ротора 0,85...0,9 от nкр, срабатывает клапан 7 и емкость 5 наполняется сжатым воздухом из баллона 6. Возникающая при этом осевая сила, приложенная к диску 2, смещает ротор, что приводит к изменению податливости нелинейной опоры 4. Это приводит к изменению АЧХ ротора (кривая 2 на фиг.2) и, как результат, к изменению значения критической частоты вращения ротора от значения nкр до значения n'кр и уменьшению виброперемещений, фиксируемых датчиком 9 при дальнейшем увеличении частоты вращения ротора. При достижении частоты вращения ротора, равной 1,1...1,2 nкр, устройство обратной связи 8 перекрывает клапан 7, что убирает осевую силу, действующую на ротор, и изменяет податливость нелинейной опоры 4 до первоначального значения. Это изменяет АЧХ ротора на первоначальную (кривая 1 на фиг.2) и, как результат, изменяет значение критической частоты вращения ротора от значения n'кр до значения n кр. Т.о. изменение АЧХ ротора в процессе его работы протекает по кривой 3, фиг.2.

Осуществление изобретения позволяет уменьшить динамические прогибы роторов ГТД и вибрационные нагрузки на опоры.

Класс G01M13/00 Испытание деталей машин

система и способ для определения состояния подшипника -  патент 2529644 (27.09.2014)
неразрушающий контроль уплотняющего элемента -  патент 2529292 (27.09.2014)
стенд для испытания сопла -  патент 2528467 (20.09.2014)
способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент -  патент 2527673 (10.09.2014)
модуль подшипника с сенсорным устройством -  патент 2526319 (20.08.2014)
дифференциальный нагружатель для стенда с механически-замкнутым контуром -  патент 2526224 (20.08.2014)
стенд для испытания редукторов -  патент 2521221 (27.06.2014)
способ безразборной диагностики степени износа коренных подшипников двигателя внутреннего сгорания -  патент 2517968 (10.06.2014)
беспроводная система измерения температуры опорных и упорных подшипников скольжения -  патент 2516918 (20.05.2014)
установка для измерения собственной частоты колебаний роторов силовых гироскопов -  патент 2515424 (10.05.2014)
Наверх