способ стимулирования роста растений

Классы МПК:A01N37/04 многоосновные
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Закрытое акционерное общество "Сельскохозяйственное предприятие Озерское" (ЗАО СХП "Озерское") (RU)
Приоритеты:
подача заявки:
2004-11-02
публикация патента:

Описывается способ стимулирования роста растений водными растворами предельных дикарбоновых кислот, таких как малоновая, щавелевая, яблочная или янтарная кислота при концентрации ее в водном растворе 10-11-10-15 моль/л. Техническим результатом является удешевление способа, повышение его экономичности и экологической безопасности за счет снижения количества используемого стимулятора при одновременном повышении его эффективности. 4 табл.

(56) (продолжение):

CLASS="b560m"Гаврилова Л.В. Влияние янтарной и фумаровой кислот на рост, развитие и урожайность редиса и огурцов. Бюллетень Главного ботанического сада, Москва, Академия Наук СССР, выпуск 45, 1962, стр. 98-101.

RU 2134039 C1, 10.08.1999.

RU 2201079 C2, 27.03.2003.

US 4071348, 31.01.1978.

Формула изобретения

Способ стимулирования роста растений, включающий обработку семян и опрыскивание растений в период вегетации водным раствором предельной дикарбоновой кислоты, отличающийся тем, что в качестве предельной дикарбоновой кислоты используют малоновую, щавелевую, яблочную или янтарную кислоту при концентрации ее в водном растворе 10-11-10-15 моль/л.

Описание изобретения к патенту

Изобретение относится к области сельского хозяйства, конкретно к химическим средствам, стимулирующим рост растений, и может быть использовано как при предпосевной обработке семян, так и при выращивании растений в открытом и закрытом грунтах.

Стимуляторы роста растений в настоящее время приобретают все большую популярность. Они способствуют приросту урожайности различных сельскохозяйственных культур, повышению качества сельхозпродукции. Экономическая выгода от использования синтетических стимуляторов роста многократно превышает затраты на их приобретение. Многие из них нашли применение в практике. Однако широкому их распространению препятствует, во-первых, тот факт, что в нынешних условиях при резком сокращении выпуска многих синтетических препаратов, в том числе стимуляторов роста растений, они становятся дефицитными, что, в свою очередь, ведет к повышению их стоимости. Во-вторых, как любые биологически активные вещества, стимуляторы роста требуют очень осторожного обращения с ними. При передозировке этих соединений можно не только не получить ожидаемого эффекта, но и столкнуться с прямо противоположными результатами. При этом обычно диапазон концентраций стимуляторов роста очень узок и специфичен для разных стадий развития растений, поэтому вероятность передозировки достаточно велика. Но самое главное в том, что механизм воздействия стимуляторов на ростовые процессы в растениях до сих пор до конца не выяснен, однозначно нельзя предугадать воздействия на живой организм (человека или животного) сельхозпродукции, выращенной с использованием стимуляторов роста.

Из всех известных стимуляторов роста только о гуминовых веществах можно совершенно определенно сказать, что в организме человека и животного они также проявляют положительный физиологический эффект, что подтверждено результатами исследований учеными многих стран. Что касается других групп стимуляторов роста, то с ними таких широкомасштабных исследований не проводилось, и как скажется их применение при выращивании зерна, кормов и другой сельхозпродукции на развитие живого организма, неизвестно.

Поэтому задача снижения количества используемого стимулятора роста при сохранении его эффективности приобретает особую актуальность.

В качестве стимуляторов роста в сельском хозяйстве используют как индивидуальные соединения, так и композиции, содержащие в своем составе ростостимулирующие вещества.

Из уровня техники известно применение в качестве стимуляторов роста некоторых предельных дикарбоновых кислот в виде водных растворов или в составе водо-растворимых композиций.

Известна композиция для повышения устойчивости растений к болезням путем обработки семян и вегетирующих растений на основе водных растворов хитозана, в которой в качестве регуляторов роста растений содержатся гетероауксин и янтарная и молочная кислота или их смесь с глутаминовой кислотой в количестве 0,001-0,005 и 0,004-0,5 мас.% (10-7·5·10-7 и 4·10-7-5·10-5 моль/л соответственно (пат. РФ №2158510, 7 МПК А 01 N 25/00, 37/04, 37/44, опубл. 2000 г.).

Известно также средство, одновременно стимулирующее рост растений и повышение их устойчивости к засухе (пат. РФ №2133092, 6 МПК A 01 N 37/02, опубл. 1999 г.), которое включает янтарную, малеиновую, фумаровую и муравьиную кислоты, 2(5Н)-фуранон и способ стимулирования роста растений, патент № 2267924-формилакриловую кислоту. Данное средство используют в виде водных растворов с массовой долей 0,01-0,0001% (10-6-10-8 моль/л (оптимальная концентрация - 10-7 моль/л). Обработку растений проводят путем замачивания семян и опрыскивания растений в фазу бутонизации.

Известен способ стимулирования роста растений (пат. РФ №2088086, 6 МПК A 01 N 59/00, опубл. 1997 г.), заключающийся в обработке семян и поливе растений в период вегетации водным раствором, содержащим 10-6-10-4 моль/л перекиси водорода, 10-6-10-5 г/ион ионов меди и 10-6-2·10-6 моль/л щавелевой кислоты.

Как видно из приведенных выше источников, для применяемых стимуляторов роста оптимальной концентрацией является 10-5-10-7 моль/л. С понижением концентрации ниже 10-7 моль/л стимулирующее действие их резко снижается.

Одним из наиболее распространенных стимуляторов роста растений является янтарная кислота (Г.Н.Чупахина, А.Ю.Романчук. Возможный механизм стимулирования ростовых процессов янтарной кислотой. Теоретические и прикладные аспекты биологии. Калининград, 1999, с.46-51). Янтарную кислоту используют в виде водного раствора оптимальной концентрации 10-4-10-5 моль/л. Дальнейшее уменьшение концентрации до 10-6-10 -7 моль/л снижает ростостимулирующую способность янтарной кислоты до уровня контрольных опытов. Данный способ принят за прототип.

Технической задачей, решаемой предлагаемым изобретением, является удешевление способа, повышение его экономичности и экологической безопасности за счет снижения количества используемого стимулятора при одновременном повышении его эффективности.

Техническая задача решается тем, что в способе стимулирования роста растений, включающем обработку семян и опрыскивание растений в период вегетации водным раствором дикарбоновой кислоты, в качестве предельной дикарбоновой кислоты используют малоновую, щавелевую, яблочную или янтарную кислоту при концентрации ее в водном растворе 10 -11-10-15 моль/л.

Сущность изобретения заключается в следующем. Как следует из уровня техники, водные растворы некоторых предельных дикарбоновых кислот или их смеси с другими компонентами применялись в качестве стимуляторов роста растений, но в ограниченном диапазоне концентраций с 10-3 по 10-8 моль/л (оптимально 10-3-10 -6). Общеизвестно, что при снижении концентраций ниже 10-7-10-8 моль/л биологическая активность их снижалась до уровня контроля и ниже, поэтому естественно считалось, что ростостимулирующими свойствами такие растворы не обладают. Проведенные авторами исследования неожиданно показали, что биологическая активность предельных дикарбоновых кислот с уменьшением концентрации не исчезает, а сохраняется, причем некоторые кислоты имеют еще один максимум в области концентраций 10-11-10 -15 моль/л. Была исследована биологическая активность ряда наиболее распространенных предельных дикарбоновых кислот - лимонной, малеиновой, малоновой, молочной, фумаровой, щавелевой, яблочной и янтарной кислот, для чего были приготовлены растворы с концентрацией (моль/л): 10-3, 10-7, 10-11, 10-15, 10-17 и изучено их влияние на урожайность редиса путем предпосевной обработки (замачивание семян) и опрыскивания вегетирующих растений.

Предлагаемые растворы заявляемого стимулятора роста готовят по известным методикам следующим образом.

Первоначально готовят 1 литр 0,1 моль/л раствора, например, янтарной кислоты в дистиллированной воде. Затем из этого раствора отбирают аликвоту объемом 100 мл и доводят в мерной колбе до 1000 мл и так далее до получения раствора необходимой концентрации. Так, для получения раствора с концентрацией кислоты 10-17 моль/л эту операцию повторяют 8 раз.

Проведенные опыты показали, что у малоновой, щавелевой, яблочной и янтарной кислот биологическая активность имеет два максимума - один в диапазоне концентраций 10-3-10-6 моль/л и второй максимум - в области сверхмалых концентраций 10 -11-10-15 моль/л, в то время как у остальных этот эффект отсутствует.

Анализ известного уровня техники не позволил обнаружить какие-либо источники информации, где были бы описаны способы стимулирования роста растений водными растворами малоновой, щавелевой, яблочной и янтарной кислот заявляемой концентрации, что подтверждает соответствие заявляемого способа критерию охраноспособности «новизна».

Из анализа уровня техники известно применение водных растворов некоторых предельных дикарбоновых кислот в качестве стимуляторов роста растений, но в значительно большей концентрации (оптимальные концентрации 10-3-10-6 моль/л). Более того, в ряде работ отмечено (см. выше), что водные растворы этих кислот с концентрацией ниже 10-7 не обладают стимулирующей активностью.

Обнаруженный впервые авторами настоящего изобретения эффект повышения ростостимулирующей активности, таких предельных дикарбоновых кислот, как малоновая, щавелевая, яблочная и янтарная, в диапазоне сверхмалых концентраций 10 -11-10-15 моль/л не вытекает с очевидностью из структуры и известных свойств этих кислот. Следовательно, предлагаемое изобретение отвечает критерию охраноспособности «изобретательский уровень".

Возможность реализации заявляемого изобретения подтверждается следующими примерами.

ПРИМЕР 1. Влияние предпосевной обработки семян растворами янтарной, малоновой, лимонной, молочной и яблочной кислот на урожайность редиса.

Для опытов использовали среднеранний сорт редиса «Националь». Посев был произведен 25 мая на глубину 2 см. Площадь опыта составила 1 м2. Опыты ставили в трехкратной повторности. Предпосевная обработка кислотой заключалась в замачивании 200 семян редиса в растворе кислоты в диапазоне заявляемых концентраций в течение 30 минут. Урожай был собран 12 июня. Урожайность и результаты анализов выращенного редиса приведены в таблице 1.

Таблица 1

Влияние предпосевной обработки семян растворами малоновой, янтарной, лимонной, молочной и яблочной кислот на урожайность редиса.
Концентрация кислоты, моль/лМассовая доля сухого веществаСредняя масса корнеплодаУрожайность
Абсолютная величина, % % к контролюАбсолютная величина, г % к контролюАбсолютная величина, ц/га% к контролю
Малоновая кислота
10-35,74 986,2948 151179
10 -75,08 868,9469 288270
10 -115,92 1019,2671 338400
10 -154,62 798,0262 249294
10 -175,86 995,040 84,7102
Янтарная кислота
10 -35,7398 5,7844 186113
10 -76,33 1086,4149 271175
10 -115,02 856,5650 281202
10 -156,22 1068,1963 340354
10 -175,86 995,145 84,5100
Лимонная кислота
10 -36,53112 9,1070 23,728
10 -76,05 1038,1563 27,732
10 -116,37 1099,2071 33,139
10 -156,18 10511,7090 30,435
10 -175,85 9912,898 83,896
Молочная кислота
10 -37,17122 9,0570 35,341
10 -76,60 11213,20101 52,661
10 -116,82 1165,1039 25,029
10 -156,72 1146,6051 29,034
10 -175,87 1004,933 84,097
Яблочная кислота
10 -37,27124 12,1093 42,359
10 -76,68 1149,9577 43,751
10 -115,40 9216,4031 91,6107
10 -154,98 8516,90130 91,0106
10 -175,86 9912,999 85,098
Контроль 5,87  13,0 84,5  

ПРИМЕР 2. Влияние предпосевной и внекорневой обработки растворами янтарной, малоновой, лимонной, молочной и яблочной кислот на урожайность редиса.

Для опытов использовали среднеранний сорт редиса «Националь». Посев был произведен на глубину 2 см. Расстояние между растениями в ряду - 2,5 см, в междурядьях - 10 см. Площадь опыта составили 1 м2. Опыты ставили в трехкратной повторности. Предпосевная обработка кислотой заключалась в замачивании 200 семян редиса в растворе кислоты в диапазоне заявляемых концентраций в течение 30 минут. Первая обработка вегетирующих растений редиса производилась в фазу появления первой пары настоящих листьев - 3 июня, а вторая - 10 июня. Она заключалась в опрыскивании опытного участка размером 1 м2 0,1 л раствора кислоты, соответствующей примеру 1 концентрации.

Урожай был собран 12 июня. Урожайность и результаты анализа выращенного редиса приведены в таблице 2.

Таблица 2

Влияние предпосевной и внекорневой обработки растворами малоновой, янтарной, лимонной, молочной и яблочной кислот на урожайность редиса.
Концентрация кислоты, моль/л Массовая доля сухого вещества Средняя масса корнеплодовУрожайность
Абсолютная величина, %% к контролю Абсолютная величина, г% к контролю Абсолютная величина, ц/га % к контролю
Малоновая кислота
10-3 6,21105 7,4757 280332
10-7 5,34918,35 64292 346
10 -115,29 909,3372 382453
10-15 5,99103 7,7159297 351
10 -175,86 1007,054 84,5100
Янтарная кислота
10-3 5,93101 6,8853186 220
10 -75,69 978,7567 271321
10-11 5,399210,05 77281 333
10 -154,50 769,8576 340402
10-17 4,85837,71 5984,3 98
Лимонная кислота
10 -37,16 1226,35 4920,924
10-7 6,15105 11,2086 31,337
10-11 6,83116 9,907636,6 43
10 -156,18 1058,10 6234,040
10-17 5,8197 4,984684,0 99
Молочная кислота
10 -36,71 11413,40 10368,2 79
10-7 6,33108 13,50104 63,774
10-11 6,99119 11,3087 39,746
10 -156,21 10612,30 9562,8 73
10 -175,85 9912,99 9984,5100
Яблочная кислота
10-3 6,73115 16,40126 113131
10-7 6,38109 10,8083 69,981
10-116,67 11314,90 11589,7105
10-15 5,7898 14,10108 116135
10-175,87 10013,1 10186,0102
Контроль 5,87  13,0  84,5 

ПРИМЕР 3. Влияние предпосевной обработки семян растворами щавелевой, малеиновой и фумаровой кислот на урожайность редиса. Опыт проводили в условиях примера 1, но в качестве кислот использовали щавелевую, малеиновую и фумаровую кислоты в заявленных концентрациях. Урожайность и результаты анализа выращенного редиса приведены в таблице 3.

Таблица 3

Влияние предпосевной обработки растворами малеиновой, фумаровой и щавелевой кислот на урожайность редиса.
Концентрация кислоты, моль/лМассовая доля сухого веществаСредняя масса корнеплодовУрожайность
Абсолютная величина, % % к контролюАбсолютная величина, г % к контролюАбсолютная величина, ц/га% к контролю
Малеиновая кислота
10-34,98 12613,792 74,078
10 -73,43 876,4944 24,025
10 -115,18 13113,5291 87,592
10 -154,26 10819,50131 97,5103
10 -173,96 10014,83100 94,599
Фумаровая кислота
10 -34,81122 15,89107 71,575
10 -75,77 1466,6745 18,019
10 -115,28 13412,8186 80,785
10 -154,76 12114,8299 83,087
10 -173,94 10014,8198 93,097
Щавелевая кислота
10 -35,48139 17,90121 68,072
10 -74,15 10515,62105 100,0105
10-114,66 1187,5251 20,321
10 -154,68 11921,30143 115,0121
10-173,97 10114,8299 93,598
Контроль 3,95  14,85 95,0  

ПРИМЕР 4. Влияние предпосевной и внекорневой обработки растворами щавелевой, малеиновой и фумаровой кислот на урожайность редиса.

Опыт проводили в условиях примера 2, но в качестве кислот использовали щавелевую, малеиновую и фумаровую кислоты в соответствующих примеру 3 концентрациях. Урожайность и результаты анализа выращенного редиса приведены в таблице 4.

Таблица 4

Влияние предпосевной и внекорневой обработки растворами малеиновой, фумаровой и щавелевой кислот на урожайность редиса.
Концентрация кислоты, моль/лМассовая доля сухого веществаСредняя масса корнеплодовУрожайность
Абсолютная величина, % % к контролюАбсолютная величина, г % к контролюАбсолютная величина, ц/га% к контролю
Малеиновая кислота
10-35,38 13618,12122 87,092
10 -75,10 1299,7065 32,034
10 -114,97 12614,2095 98,0103
10 -154,93 12514,2296 69,773
10 -173,91 9814,8098 92,597
Фумаровая кислота
10 -35,20132 24,10162 94,099
10 -75,11 1296,5844 25,026
10 -115,05 12814,7299 78,082
10 -154,46 11319,74133 75,079
10 -173,94 9914,8499 95,0100
Щавелевая кислота
10 -35,03127 25,80174 113,5119
10-74,34 11025,12169 160,8169
10-114,59 1169,1962 34,036
10 -155,16 13122,36151 123,0129
10-173,95 10014,7598 96,0102
Контроль 3,95  14,85 95,0  

Из анализа таблицы 3 и 4 видно, что повышение биологической активности наблюдается только у щавелевой кислоты.

Т.о., предлагаемый способ позволяет, во-первых, намного уменьшить количество используемого стимулятора, что практически исключает вероятность передозировки, приводит к удешевлению способа и повышению его экологической безопасности, а во-вторых, позволяет повысить эффективность стимулирования за счет неизвестного ранее эффекта повышения ростостимулирующей активности малоновой, щавелевой, яблочной и янтарной кислоты в заявляемом диапазоне концентраций.

Класс A01N37/04 многоосновные

активатор корнеобразования и роста растений на основе хитозана и янтарной кислоты "амулет" -  патент 2484629 (20.06.2013)
композиция для водных составов, проявляющая биоцидную активность -  патент 2444193 (10.03.2012)
способ ингибирования переноса вируса гриппа -  патент 2431961 (27.10.2011)
способ получения высококонцентрированного раствора минерального удобрения для предпосевной обработки семян -  патент 2407287 (27.12.2010)
средство для предпосевной обработки семян сельскохозяйственных культур (варианты) -  патент 2309588 (10.11.2007)
водные композиции гербицидного концентрата, способ снижения содержания поверхностно-активного компонента в водной композиции гербицидного концентрата, способ подавления роста ипомеи, твердая композиция гербицидного концентрата -  патент 2291619 (20.01.2007)
применение динатриевой соли этилендиаминтетрауксусной кислоты (трилона б) в качестве стимулятора роста растений и способ его использования -  патент 2269893 (20.02.2006)
защитно-стимулирующий состав для обработки семян зерновых культур от возбудителей болезней, вызываемых головневыми грибами -  патент 2232504 (20.07.2004)
гелеобразный состав с замедленным выделением и способ для борьбы с заражением семей медоносных пчел клещами -  патент 2225727 (20.03.2004)
модификатор (стимулятор) для обработки растений и способ его использования -  патент 2201079 (27.03.2003)
Наверх