способ определения содержания белка в растворах

Классы МПК:G01N33/68 с использованием протеинов, пептидов или аминокислот
G01N33/52 использование соединений или составов для колориметрического, спектрофотометрического или флуорометрического анализа, например реактивной бумаги
Автор(ы):,
Патентообладатель(и):Институт биологии Коми научного центра Уральского отделения Российской академии наук (RU)
Приоритеты:
подача заявки:
2004-05-31
публикация патента:

Изобретение относится к области биохимии и биотехнологии и может использоваться для ускоренного определения содержания белка в биологических жидкостях и ферментных растворах. Способ определения содержания белка в растворах включает обработку исследуемой пробы щелочным медьсодержащим реактивом, состоящим из 49 частей раствора А: 2%-ного карбоната натрия в 0,2 н. гидроксиде натрия и 1 части раствора В: 0,5%-ного медного купороса в 3,33%-ном тартрате натрия или калия, с последующим добавлением реактива Фолина и выдерживанием смеси в ультратермостате при температуре 50°С в течение 10 мин. Технический результат: изобретение позволяет снизить продолжительность анализа до 20 минут, а также увеличить чувствительность и воспроизводимость определений содержания белка в растворах по методу Лоури. 2 ил, 1 табл. способ определения содержания белка в растворах, патент № 2267132

способ определения содержания белка в растворах, патент № 2267132 способ определения содержания белка в растворах, патент № 2267132

Формула изобретения

Способ определения содержания белка в растворах, включающий обработку исследуемой пробы щелочным медьсодержащим реактивом, состоящим из 49 частей раствора А: 2%-ного карбоната натрия в гидроксиде натрия и 1 части раствора В: 0,5%-ного медного купороса в 3,33%-ном тартрате натрия или калия с последующим добавлением реактива Фолина при соотношении объемов пробы и реактивов 1:4:0,4 и определением его оптической плотности при 750 нм, отличающийся тем, что используют раствор А с 0,2 н. концентрацией гидроксида натрия, а определение оптической плотности проводят после выдерживания реакционной смеси при температуре 50°С в течение 10 мин.

Описание изобретения к патенту

Изобретение относится к области биохимии и биотехнологии и может использоваться для определения содержания белка в биологических жидкостях и ферментных растворах.

Известен способ определения содержания белка по методу Лоури (прототип), основанный на цветной реакции с тирозиновыми и цистеиновыми радикалами белковой молекулы, в результате которой происходит восстановление смеси фосфорно-вольфрамовой и фосфорно-молибденовой кислот с образованием комплексного соединения синего цвета. Протеканию указанной реакции способствуют комплексные соединения меди, возникшие при взаимодействии белка с щелочным раствором медного купороса. Для проведения анализа смешивают 49 частей раствора А (2%-ный карбонат натрия в 0,1 н. гидроксиде натрия) с 1 частью раствора В (0,5%-ный медный купорос в 3,33%-ном тартрате натрия или калия). Полученный щелочной медьсодержащий реактив добавляют в пропорции 4:1 к пробе, содержащей 10-100 мкг какого-либо белка, встряхивают и оставляют на 10 минут при комнатной температуре. Затем добавляют реактив Фолина в пропорции 1:10 к объему щелочного медьсодержащего реактива. При этом соотношение объемов пробы и реактивов составляет 1:4:0,4. Реакционную смесь энергично перемешивают и оставляют на 30-90 минут для развития окраски. Оптическую плотность определяют при длине волны 750 нм. Содержание белка в пробе устанавливают по калибровочному графику, построенному по растворам того же белка с точно известной концентрацией (Филиппович Ю.Б. и др. Практикум по общей биохимии. - 2-е изд., перераб. - М.: Просвещение, 1982. - С.75-77.).

Недостатком данного способа является большая продолжительность (до 100 минут), а также недостаточно высокие воспроизводимость, чувствительность, точность анализа и узкий линейный диапазон калибровочного графика (0-100 мкг/см3). Это связано с тем, что в условиях способа-прототипа цветная реакция протекает медленно и при неконтролируемых по времени выдержки измерениях (30-90 минут) возможно неполное развитие окраски раствора. В условиях способа-прототипа, т.е. при соотношении 10:1 объемов щелочного медьсодержащего реактива и реактива Фолина, достигается рН среды около 9,0, при этом, как показано на Фиг.1, наблюдаются наименьшие скорость развития окраски раствора и ее интенсивность.

Техническим результатом настоящего изобретения является увеличение экспрессности, чувствительности, воспроизводимости и точности определений содержания белка в растворах, а также расширение линейного диапазона калибровочного графика.

Технический результат достигается тем, что в ходе определений увеличивают концентрацию гидроксида натрия в растворе А до 0,2 н. при сохранении прежних объемов дозирования всех растворов или увеличивают объем щелочного медьсодержащего реактива до соотношения объемов пробы и реактивов 1:8:0,4, а оптическую плотность раствора определяют после его выдержки в течение 10 минут при температуре 50°С.

Увеличение концентрации гидроксида натрия в растворе А или объема используемого щелочного медьсодержащего реактива приводит к увеличению рН реакционной смеси до 11-12. Это способствует более полному развитию окраски (см. Фиг.1) и, как следствие, увеличению чувствительности и точности определений, а также расширению линейного диапазона калибровочного графика. Нагревание раствора после смешения реагентов в течение 10 минут при температуре 50°С приводит к увеличению скорости протекания цветной реакции, что способствует увеличению экспрессности и воспроизводимости анализа (см. Фиг.2).

Способ осуществляется следующим образом: к исследуемой пробе, содержащей 10-300 мкг какого-либо белка, добавляют щелочной медьсодержащий реактив (А+В) в пропорции 8:1 к объему пробы, встряхивают и оставляют на 10 минут при комнатной температуре, после чего добавляют реактив Фолина в пропорции 1:20 к объему щелочного медьсодержащего реактива. Соотношение объемов пробы и реактивов при этом составляет 1:8:0,4. Реакционную смесь энергично перемешивают и устанавливают в ультратермостат при температуре 50°С на 10 минут (по секундомеру). Оптическую плотность определяют после охлаждения реакционной смеси при длине волны 750 нм относительно контрольного раствора, содержащего все реагенты, в тех же объемах, кроме пробы, вместо которой добавляют дистиллированную воду. Калибровочную кривую строят аналогичным образом по растворам того же самого белка с точно известной концентрацией.

При использовании раствора А с более высокой концентрацией гидроксида натрия (0,2 н.) способ осуществляют аналогичным образом, но щелочной медьсодержащий реактив (А+В) добавляют в пропорции 4:1 к объему пробы, а реактив Фолина добавляют в пропорции 1:10 к объему щелочного медьсодержащего реактива. Соотношение объемов пробы и реактивов при этом составляет 1:4:0,4.

Пример 1. Для проведения анализа смешивают 49 см3 раствора А (2%-ный карбонат натрия в 0,1 н. гидроксиде натрия) с 1 см 3 раствора В (0,5%-ный медный купорос в 3,33%-ном тартрате натрия или калия). К 1 см3 пробы, содержащей 10-300 мкг бычьего сывороточного альбумина (БСА), добавляют 8 см 3 щелочного медьсодержащего реактива, встряхивают и оставляют на 10 минут при комнатной температуре. Затем добавляют 0,4 см 3 реактива Фолина, энергично перемешивают и устанавливают смесь в ультратермостат при температуре 50°С на 10 минут (по секундомеру) для развития окраски. Реакционную смесь охлаждают до комнатной температуры и определяют оптическую плотность при длине волны 750 нм относительно контрольного раствора, содержащего все реагенты в указанных количествах и дистиллированную воду вместо пробы. Содержание белка в пробе устанавливают по калибровочному графику, построенному аналогичным образом по растворам БСА с точно известной концентрацией. Коэффициенты калибровочного графика и результаты анализа раствора БСА с неизвестной концентрацией представлены в таблице 1.

Пример 2. Для проведения анализа смешивают 49 см3 раствора А (2%-ный карбонат натрия в 0,2 н. гидроксиде натрия) с 1 см3 раствора В (0,5%-ный медный купорос в 3,33%-ном тартрате натрия или калия). К 1 см 3 пробы, содержащей 10-300 мкг БСА, добавляют 4 см 3 щелочного медьсодержащего реактива, встряхивают и оставляют на 10 минут при комнатной температуре. Затем добавляют 0,4 см3 реактива Фолина, энергично перемешивают и устанавливают смесь в ультратермостат при температуре 50°С на 10 минут (по секундомеру) для развития окраски. Реакционную смесь охлаждают до комнатной температуры, доводят объем до 9,4 см3 (аналогично примеру 1) добавлением 4 см3 дистиллированной воды и определяют оптическую плотность при длине волны 750 нм относительно контрольного раствора, содержащего все реагенты в указанных количествах и дистиллированную воду вместо пробы. Содержание белка в пробе устанавливают по калибровочному графику, построенному аналогичным образом по растворам БСА с точно известной концентрацией. Коэффициенты калибровочного графика и результаты анализа раствора БСА с неизвестной концентрацией представлены в таблице 1.

Пример 3 (по прототипу). Для проведения анализа смешивают 49 см3 раствора А (2%-ный карбонат натрия в 0,1 н. гидроксиде натрия) с 1 см3 раствора В (0,5%-ный медный купорос в 3,33%-ном тартрате натрия или калия). К 1 см3 пробы, содержащей 10-100 мкг БСА, добавляют 4 см3 щелочного медьсодержащего реактива, встряхивают и оставляют на 10 минут при комнатной температуре. Затем добавляют 0,4 см3 реактива Фолина, энергично перемешивают и оставляют на 90 минут для развития окраски. Доводят объем реакционной смеси до 9,4 см3 (аналогично примерам 1-2) добавлением 4 см3 дистиллированной воды и определяют оптическую плотность при длине волны 750 нм относительно контрольного раствора, содержащего все реагенты в указанных количествах и дистиллированную воду вместо пробы. Содержание белка в пробе устанавливают по калибровочному графику, построенному аналогичным образом по растворам БСА с точно известной концентрацией. Коэффициенты калибровочного графика и результаты анализа раствора БСА с неизвестной концентрацией представлены в таблице 1.

Как видно из данных таблицы 1, предлагаемый способ позволяет снизить продолжительность анализа в 5 раз и увеличить диапазон линейной зависимости оптической плотности от концентрации белка в растворе в 3 раза. Увеличение коэффициента пропорциональности k в уравнении прямой калибровочного графика способствует увеличению чувствительности определений, а снижение величин относительного стандартного отклонения S n и доверительного интервала n приводит к увеличению воспроизводимости и точности определений по сравнению со способом-прототипом.

Таблица 1
 Время КоэффициентыДиапазон РезультатыSn*, n**,
№ п/п анализа, мин. калибровочного графикалинейности, мкг/см 3определений, мкг/см 3% мкг/см3
   k b     
Пример 1      57,9  
       57,6   
  201,95×10 -300-300 57,40,40 ±0,3
       57,9   
       57,9  
Пример 2      57,4   
       57,5   
 20 2,21×10-30 0-30057,3 0,31±0,2
       57,7  
       57,7   
Пример 3      60,4   
(прототип)      57,7   
  1001,47×10-3 00-100 61,13,23±2,4
       57,7   
       61,8   
*Sn - относительное стандартное отклонение

**n - доверительный интервал при f=0,95

Класс G01N33/68 с использованием протеинов, пептидов или аминокислот

способ прогнозирования инфекционного осложнения атопического дерматита у ребенка -  патент 2528908 (20.09.2014)
способ диагностики генетической предрасположенности к нарушениям сердечной проводимости -  патент 2528900 (20.09.2014)
способ прогнозирования неблагоприятного исхода гипертрофической кардиомиопатии -  патент 2527768 (10.09.2014)
способ прогнозирования риска развития рестеноза коронарных артерий после их стентирования у пациентов с ишемической болезнью сердца -  патент 2523391 (20.07.2014)
способ определения индивидуальной радиочувствительности больных злокачественными новообразованиями при проведении лучевой терапии -  патент 2522507 (20.07.2014)
способ прогнозирования прерывания беременности в первом триместре -  патент 2522244 (10.07.2014)
способ диагностики онкологических заболеваний и иммуноферментный набор для его осуществления -  патент 2522231 (10.07.2014)
способ прогнозирования риска развития сахарного диабета второго типа у больных гипертонической болезнью -  патент 2521202 (27.06.2014)
способы и применения, включающие гемсвязывающий белок 1 -  патент 2520748 (27.06.2014)
композиции и мультипараметричекие способы анализа для измерения биологических медиаторов физиологического здоровья -  патент 2520080 (20.06.2014)

Класс G01N33/52 использование соединений или составов для колориметрического, спектрофотометрического или флуорометрического анализа, например реактивной бумаги

способ диагностики тромбоэмболии легочных артерий -  патент 2527346 (27.08.2014)
способ оценки токсической опасности антихолинэстеразных соединений -  патент 2526817 (27.08.2014)
способ спекрофотометрического определения ионов металлов -  патент 2526176 (20.08.2014)
способ прогнозирования эффективности лечения больных раком легкого -  патент 2526120 (20.08.2014)
способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях -  патент 2524667 (27.07.2014)
способ прогнозирования наступления беременности -  патент 2524650 (27.07.2014)
способ определения маркера развития ревматоидного артрита на основе выявления укорочения относительной длины теломер на отдельных хромосомах в т-лимфоцитах периферической крови -  патент 2522961 (20.07.2014)
способ раннего выявления дисметаболической нефропатии у детей 3-7 лет нефелометрическим методом -  патент 2521366 (27.06.2014)
способ прогнозирования развития кардиопатии и энцефалопатии в неонатальном периоде у новорожденных от женщин с фетоплацентарной недостаточностью -  патент 2521287 (27.06.2014)
способ интраоперационной диагностики рака щитовидной железы -  патент 2521239 (27.06.2014)
Наверх