интегральный микромеханический гироскоп

Классы МПК:G01C19/56 поворотно-чувствительные устройства с колеблющимися массами, например с камертоном 
G01P9/04 с использованием поворотно-чувствительных устройств с вибрирующими массами, например камертонов 
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Таганрогский государственный радиотехнический университет" (ТРТУ) (RU)
Приоритеты:
подача заявки:
2004-06-07
публикация патента:

Изобретение относится к области измерительной техники и интегральной электроники, а более конкретно - к интегральным измерительным элементам величины угловой скорости. Устройство содержит подложку с расположенными на ней электродами емкостных преобразователей перемещений, две инерционные массы, расположенные с зазором относительно подложки и выполненные в виде пластин из полупроводникового материала, образующие с электродами емкостных преобразователей перемещений плоские конденсаторы за счет их полного перекрытия, и неподвижные электроды электростатических приводов, выполненные из полупроводникового материала и расположенные на подложке, а также шестнадцать дополнительных электродов емкостных преобразователей перемещений, выполненных из полупроводникового материала и расположенных на подложке так, что они образуют с инерционными массами плоские конденсаторы за счет частичного перекрытия гребенок электродов, один дополнительный неподвижный электрод электростатического привода с гребенчатой структурой, выполненный из полупроводникового материала и расположенный на подложке, четыре дополнительных подвижных электрода электростатических приводов с гребенчатыми структурами, выполненные из полупроводникового материала и расположенные с зазором относительно подложки с возможностью электростатического взаимодействия с неподвижными электродами в плоскости их пластин через боковые зазоры и взаимопроникающие гребенки электродов, две дополнительные опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем подложка и электроды емкостных преобразователей перемещений выполнены из полупроводникового материала. Техническим результатом является возможность измерения величины угловой скорости вокруг осей X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки гироскопа. 3 ил. интегральный микромеханический гироскоп, патент № 2266521

(56) (продолжение):

CLASS="b560m"6393913 B1, 28.05.2002.

интегральный микромеханический гироскоп, патент № 2266521 интегральный микромеханический гироскоп, патент № 2266521 интегральный микромеханический гироскоп, патент № 2266521

Формула изобретения

Интегральный микромеханический гироскоп, содержащий подложку с расположенными на ней электродами емкостных преобразователей перемещений, две инерционные массы, расположенные с зазором относительно подложки и выполненные в виде пластин из полупроводникового материала, образующие с электродами емкостных преобразователей перемещений плоские конденсаторы за счет их полного перекрытия, три неподвижных электрода электростатических приводов, выполненных из полупроводникового материала и расположенных на подложке, и четыре опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, отличающийся тем, что в него введены шестнадцать дополнительных электродов емкостных преобразователей перемещений, выполненных из полупроводникового материала и расположенных на подложке так, что они образуют с инерционными массами плоские конденсаторы за счет частичного перекрытия гребенок электродов, один дополнительный неподвижный электрод электростатического привода с гребенчатой структурой, выполненный из полупроводникового материала и расположенный на подложке, четыре дополнительных подвижных электрода электростатических приводов с гребенчатыми структурами, выполненных из полупроводникового материала и расположенных с зазором относительно подложки с возможностью электростатического взаимодействия с неподвижными электродами в плоскости их пластин через боковые зазоры и взаимопроникающие гребенки электродов, две дополнительные опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем дополнительные подвижные электроды связаны с подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами соединены с указанными подвижными электродами, а другими с опорами, причем подложка и электроды емкостных преобразователей перемещений выполнены из полупроводникового материала.

Описание изобретения к патенту

Предлагаемое изобретение относится к области измерительной техники и интегральной электроники, а более конкретно к интегральным измерительным элементам величины угловой скорости.

Известен интегральный микромеханический гироскоп [В.П.Тимошенков, С.П.Тимошенков, А.А.Миндеева, Разработка конструкции микрогироскопа на основе КНИ-технологии, Известия вузов, Электроника, №6, 1999, стр.49, рис.2], содержащий диэлектрическую подложку с напыленными на ней четырьмя электродами и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины из полупроводникового материала, образующую с парой напыленных на подложку электродов плоский конденсатор и связанную с внутренней колебательной системой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко прикреплены к инерционной массе, а другими - к внутренней колебательной системе, выполненной из полупроводникового материала, образующей с другой парой напыленных на подложку электродов плоский конденсатор, используемый в качестве электростатического привода, причем колебательная система соединена с внешней рамкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами прикреплены к внутренней колебательной системе, а другими - к внешней рамке, выполненной из полупроводникового материала и расположенной непосредственно на диэлектрической подложке.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Недостатком конструкции гироскопа является невозможность измерения величины угловой скорости вокруг оси X, расположенной в плоскости подложки.

Функциональным аналогом заявляемого объекта является микромеханический гироскоп [S.E.Alper, T.Akin, A Planar Gyroscope Using a Standard Surface Micromachining Process, The 14th European Conference on Solid-State Transducers (EUROSENSORS XIV), 2000, p.387, fig.1], содержащий подложку с расположенными на ней четырьмя электродами, выполненными из полупроводникового материала, инерционную массу, расположенную с зазором относительно подложки, выполненную в виде пластины из полупроводникового материала, образующую с парой расположенных на подложке электродов плоский конденсатор и связанную с внешним подвесом с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко прикреплены к инерционной массе, а другими - к внешнему подвесу, выполненному из полупроводникового материала и образующему с другой парой расположенных на подложке электродов плоский конденсатор, используемый в качестве электростатического привода, причем внешний подвес соединен с опорами с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с внешним подвесом, а другими - с опорами, выполненными из полупроводникового материала и расположенными непосредственно на подложке, и два электрода, выполненные из полупроводникового материала и расположенные непосредственно на подложке с зазором относительно внешнего подвеса так, что образуют плоские конденсаторы, используемые в качестве электростатических приводов.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси Z, направленной перпендикулярно плоскости подложки гироскопа.

Недостатком конструкции гироскопа является невозможность измерения величины угловой скорости вокруг оси X, расположенной в плоскости подложки.

Из известных наиболее близким по технической сущности к заявляемому объекту является интегральный микромеханический гироскоп [В.Я.Распопов, Микромеханические приборы. Учебное пособие, Тул. гос. университет, Тула, 2002, стр.32, рис.1.26], содержащий диэлектрическую подложку с расположенными на ней металлическими электродами емкостных преобразователей перемещений, две инерционные массы, расположенные с зазором относительно диэлектрической подложки и выполненные в виде пластин из полупроводникового материала, образующие с расположенными на диэлектрической подложке электродами емкостных преобразователей перемещений плоские конденсаторы, и связанные с диэлектрической подложкой через систему упругих балок, которые одними концами соединены с инерционными массами, а другими - с опорами, выполненными из полупроводникового материала и расположенными на диэлектрической подложке, один неподвижный электрод электростатического привода с гребенчатыми структурами по обеим его сторонам, выполненный из полупроводникового материала и расположенный на диэлектрической подложке между инерционными массами, с возможностью электростатического взаимодействия с инерционными массами в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, два неподвижных электрода электростатических приводов с гребенчатыми структурами, выполненные из полупроводникового материала и расположенные на диэлектрической подложке по внешним сторонам инерционных масс, с возможностью электростатического взаимодействия с инерционными массами в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов.

Данный гироскоп позволяет измерять величину угловой скорости при вращении его вокруг оси X, расположенной в плоскости подложки (Фиг.1).

Недостатком конструкции данного гироскопа является невозможность измерения величины угловой скорости вокруг оси Z, направленной перпендикулярно плоскости подложки.

Задача предлагаемого изобретения - возможность измерения величины угловой скорости вокруг осей X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки гироскопа.

Технический результат, достигаемый при осуществлении предполагаемого изобретения, заключается в возможности измерения величины угловой скорости вокруг осей X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки гироскопа.

Технический результат достигается за счет введения шестнадцати дополнительных электродов емкостных преобразователей перемещений, выполненных из полупроводникового материала и расположенных на подложке так, что они образуют с инерционными массами плоские конденсаторы за счет частичного перекрытия взаимопроникающих друг в друга гребенок электродов, одного дополнительного неподвижного электрода электростатического привода с гребенчатой структурой, выполненного из полупроводникового материала и расположенного непосредственно на подложке, четырех дополнительных подвижных электродов электростатических приводов с гребенчатыми структурами, выполненных в виде пластин из полупроводникового материала и расположенных с зазором относительно подложки так, что они образуют электростатическое взаимодействие с неподвижными электродами электростатических приводов в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, и двух дополнительных опор, выполненных из полупроводникового материала и расположенных непосредственно на подложке, причем подложка и электроды емкостных преобразователей перемещений выполнены из полупроводникового материала.

Для достижения необходимого технического результата в интегральный микромеханический гироскоп, содержащий подложку с расположенными на ней электродами емкостных преобразователей перемещений, две инерционные массы, расположенные с зазором относительно подложки и выполненные в виде пластин из полупроводникового материала, образующие с электродами емкостных преобразователей перемещений плоские конденсаторы за счет их полного перекрытия, и неподвижные электроды электростатических приводов, выполненные из полупроводникового материала и расположенные на подложке, введены шестнадцать дополнительных электродов емкостных преобразователей перемещений, выполненные из полупроводникового материала и расположенные на подложке так, что они образуют с инерционными массами плоские конденсаторы за счет частичного перекрытия гребенок электродов, один дополнительный неподвижный электрод электростатического привода с гребенчатой структурой, выполненный из полупроводникового материала и расположенный на подложке, четыре дополнительных подвижных электрода электростатических приводов с гребенчатыми структурами, выполненные из полупроводникового материала и расположенные с зазором относительно подложки с возможностью электростатического взаимодействия с неподвижными электродами в плоскости их пластин через боковые зазоры и взаимопроникающие гребенки электродов, две дополнительные опоры, выполненные из полупроводникового материала и расположенные непосредственно на подложке, причем подложка и электроды емкостных преобразователей перемещений выполнены из полупроводникового материала.

На Фиг.1 приведена топология прототипа интегрального микромеханического гироскопа. На Фиг.2 приведена топология предлагаемого интегрального микромеханического гироскопа и показаны сечения. На Фиг.3 приведена структура предлагаемого интегрального микромеханического гироскопа.

Интегральный микромеханический гироскоп (Фиг.2) содержит полупроводниковую подложку 1 с расположенными на ней восемнадцатью электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, выполненными из полупроводникового материала, четыре неподвижных электрода электростатических приводов 20, 21, 22, 23, выполненные из полупроводникового материала и расположенные на полупроводниковой подложке 1, четыре подвижных электрода электростатических приводов 24, 25, 26, 27, выполненные в виде пластин из полупроводникового материала и расположенные с зазором относительно полупроводниковой подложки 1, образующие электростатическое взаимодействие с неподвижными электродами электростатических приводов 20, 21, 22, 23 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенками электродов, и связанных с полупроводниковой подложкой 1 с помощью упругих балок 28, 29, 30, 31, 32, 33, 34, 35, выполненных из полупроводникового материала, которые одними концами соединены с подвижными электродами электростатических приводов 24, 25, 26, 27, а другими - с опорами 36, 37, 38, 39, 40, 41, выполненными из полупроводникового материала и расположенными непосредственно на полупроводниковой подложке 1, две инерционные массы 42, 43, выполненные в виде пластин из полупроводникового материала, расположенные с зазором относительно полупроводниковой подложки 1, образующие с расположенными на полупроводниковой подложке 1 электродами емкостных преобразователей перемещений 2, 3 плоские конденсаторы за счет их полного перекрытия, с электродами емкостных преобразователей перемещений 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 плоские конденсаторы за счет частичного перекрытия взаимопроникающих друг в друга гребенок электродов, и связанных с подвижными электродами электростатических приводов 24, 25, 26, 27 с помощью упругих балок 44, 45, 46, 47, выполненных из полупроводникового материала.

Работает устройство следующим образом.

При подаче на неподвижные электроды электростатических приводов 20, 23 и 21, 22 переменных напряжений, сдвинутых относительно друг друга по фазе на 180°, относительно подвижных электродов электростатических приводов 24, 27 и 25, 26, между ними возникает электростатическое взаимодействие, что приводит к возникновению противофазных колебаний последних в плоскости полупроводниковой подложки 1 (вдоль оси Y), за счет изгиба упругих балок 28, 29, 30, 31, 32, 33, 34, 35, соединяющих подвижные электроды 24, 25, 26, 27 с опорами 36, 37, 38, 39, 40, 41. Колебания подвижных электродов 24, 25, 26, 27 передаются инерционным массам 42, 43 через упругие балки 44, 45, 46, 47. Зазор между электродами емкостных преобразователей перемещений 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 и инерционными массами 42, 43 не изменяется. В парах емкостных преобразователей перемещений (Фиг.3), образованных электродами 4, 5 и 6, 7 и 8, 9 и 10, 11 и 12, 13 и 14, 15 и 16, 17 и 18, 19 и инерционными массами 42, 43 соответственно, происходит одинаковое изменение площади взаимного перекрытия. Напряжения, генерируемые в парах емкостных преобразователей перемещений, образованных электродами 2, 3 и 4, 5 и 6, 7 и 8, 9 и 10, 11 и 12, 13 и 14, 15 и 16, 17 и 18, 19 и инерционными массами 42, 43 соответственно, одинаковы.

При возникновении вращения полупроводниковой подложки 1 (угловой скорости) вокруг оси, расположенной в плоскости полупроводниковой подложки 1 (ось X), инерционные массы 42, 43 под действием сил Кориолиса начинают совершать колебания перпендикулярно плоскости полупроводниковой подложки 1 в противофазе друг другу за счет изгиба упругих балок 44, 45, 46, 47. Разность напряжений, генерируемых на емкостных преобразователях перемещений, образованных электродами 2, 3 и инерционными массами 42, 43 соответственно за счет изменения величины зазора между ними, характеризует величину угловой скорости. Напряжения, генерируемые в парах емкостных преобразователей перемещений, образованных электродами 4, 5 и 6, 7 и 8, 9 и 10, 11 и 12, 13 и 14, 15 и 16, 17 и 18, 19 и инерционными массами 42, 43 соответственно, одинаковы.

При возникновении вращения полупроводниковой подложки 1 (угловой скорости) вокруг оси, направленной перпендикулярно плоскости полупроводниковой подложки 1 (ось Z), инерционные массы 42, 43 под действием сил Кориолиса начинают совершать колебания в плоскости полупроводниковой подложки 1, направленные вдоль оси Y в противофазе друг другу за счет изгиба упругих балок 44, 45, 46, 47. Напряжения, генерируемые на емкостных преобразователях перемещений, образованных электродами 2, 3 и инерционными массами 42, 43 соответственно, одинаковы. Разность напряжений, генерируемых в парах емкостных преобразователей перемещений, образованных электродами 4, 5 и 6, 7 и 8, 9 и 10, 11 и 12, 13 и 14, 15 и 16, 17 и 18, 19 и инерционными массами 42, 43 соответственно за счет изменения величины зазора между ними, характеризует величину угловой скорости.

Таким образом, предлагаемое устройство представляет собой интегральный микромеханический гироскоп, позволяющий измерять величину угловой скорости вокруг осей X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки гироскопа.

Введение шестнадцати дополнительных электродов емкостных преобразователей перемещений, одного дополнительного неподвижного электрода электростатического привода с гребенчатой структурой, четырех дополнительных подвижных электродов электростатических приводов с гребенчатыми структурами и двух дополнительных опор, причем подложка и электроды емкостных преобразователей перемещений выполнены из полупроводникового материала, позволяет измерять величину угловой скорости вокруг осей X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки гироскопа, что позволяет использовать предлагаемое изобретение в качестве интегрального измерительного элемента величины угловой скорости.

Таким образом, по сравнению с аналогичными устройствами, предлагаемый интегральный микромеханический гироскоп позволяет сократить площадь подложки, используемую под размещение измерительных элементов величины угловой скорости, так как для измерения величины угловой скорости по двум осям X, расположенной в плоскости подложки, и Z, направленной перпендикулярно плоскости подложки, используется только один интегральный микромеханический гироскоп.

Класс G01C19/56 поворотно-чувствительные устройства с колеблющимися массами, например с камертоном 

система и способ сбора сейсмических данных -  патент 2523734 (20.07.2014)
вибрационный вакуумный микрогироскоп -  патент 2518379 (10.06.2014)
адаптивный датчик на основе чувствительного полевого прибора -  патент 2511203 (10.04.2014)
калибровка вибрационного гироскопа -  патент 2509980 (20.03.2014)
пьезогироскоп -  патент 2498217 (10.11.2013)
измеритель угловой скорости -  патент 2486468 (27.06.2013)
микромеханический вибрационный гироскоп -  патент 2485444 (20.06.2013)
осесимметричный кориолисовый вибрационный гироскоп (варианты) -  патент 2476824 (27.02.2013)
способ измерения при помощи гироскопической системы -  патент 2476823 (27.02.2013)
микромеханический гироскоп компенсационного типа -  патент 2471149 (27.12.2012)

Класс G01P9/04 с использованием поворотно-чувствительных устройств с вибрирующими массами, например камертонов 

датчик скорости вращения -  патент 2436041 (10.12.2011)
пьезоэлектрический вибрационный гироскоп (варианты) -  патент 2426072 (10.08.2011)
чувствительный элемент микромеханического гироскопа -  патент 2423668 (10.07.2011)
способ балансировки пьезоэлектрического балочного биморфного чувствительного элемента вибрационного датчика угловой скорости -  патент 2417351 (27.04.2011)
чувствительный элемент кольцевого микромеханического вибрационного гироскопа -  патент 2413926 (10.03.2011)
ударопрочный вибрационный датчик угловой скорости -  патент 2412448 (20.02.2011)
микромеханический датчик угловой скорости -  патент 2410701 (27.01.2011)
способ измерения абсолютной угловой скорости и акустоэлектронный гироскоп для его реализации -  патент 2400709 (27.09.2010)
интегральный микромеханический гироскоп -  патент 2398189 (27.08.2010)
чувствительный элемент гироскопа -  патент 2397445 (20.08.2010)
Наверх