способ ионообменного извлечения урана из сернокислых растворов и пульп

Классы МПК:C22B60/02 получение тория, урана или других актиноидов
C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт химической технологии" (RU)
Приоритеты:
подача заявки:
2004-01-13
публикация патента:

Изобретение может быть использовано в области ионообменной технологии извлечения урана. Способ включает сорбцию урана на слабоосновных анионитах, десорбцию урана, получение готовой продукции. Насыщенный ураном слабоосновной анионит приводят в ОН- -форму, а уран - в растворимый устойчивый комплекс [UO2 (СО3)3]-4 путем обработки сорбента растворами карбонатов щелочных металлов и аммония. Техническим результатом является то, что способ позволяет осуществить полную десорбцию урана с одновременной очисткой сорбентов от «ядов» и других компонентов сорбции. 2 ил. способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412

(56) (продолжение):

CLASS="b560m"11.03.1999. GB 809327 A, 25.02.1959.

способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412 способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412

Формула изобретения

Способ ионообменного извлечения урана из сернокислых растворов и пульп, включающий в себя сорбцию урана на слабоосновных анионитах, десорбцию урана, получение готовой продукции из десорбата, отличающийся тем, что десорбцию с насыщенного ураном слабоосновного анионита проводят путем обработки сорбента раствором карбоната щелочного металла или карбоната аммония с переводом анионита в ОН- -форму, а уран - в растворимый устойчивый комплекс [UO 2(СО3)3]-4.

Описание изобретения к патенту

Изобретение относится к области ионообменной технологии извлечения урана из растворов и пульп, полученных в результате сернокислого выщелачивания урановых руд.

Известен ионообменный способ извлечения урана из растворов и пульп, полученных в результате сернокислого выщелачивания урановых руд. Способ включает в себя процессы сорбции урана на сильноосновных анионитах, процессы десорбции урана на сильноосновных анионитах растворами:

- серной кислоты (˜ 150 г/л)

- азотной кислоты в смеси с серной кислотой

- нитрата натрия, подкисленного серной кислотой

и процессы переработки товарных десорбатов или методом экстракции или осаждения.

/Б.В.Громов. Введение в технологию урана. Москва: Атомиздат. 1978, стр.140-150/.

Известный способ обладает рядом недостатков, связанных с трудностями осуществления процессов десорбции урана и последующими операциями переработки товарного десорбата.

При десорбции серной кислотой получаются товарные десорбаты урана, объем которых значителен - более 5 объемов с 1 смолы (соответственно концентрация урана в них невелика). Содержание серной кислоты в товарном десорбате мало отличается от концентрации серной кислоты в исходном десорбирующем растворе, поэтому осаждение диураната натрия (или аммония) из этих растворов невозможно по технологическим соображениям. Для извлечения урана из таких растворов используется экстракция, что в условиях подземного или кучного выщелачивания нерентабельно.

При использовании в процессе десорбции растворов, содержащих нитраты или хлориды, эти ионы попадают в процесс сорбции урана, где в значительной мере депрессируют сорбцию урана, снижая полноту извлечения на ионообменник.

Наиболее близким к предлагаемому способу является способ извлечения урана на слабоосновных анионитах. [Х.Гарднер, Р.Кунин. Применение слабоосновной анионообменной смолы для извлечения урана из месторождений Ураван, Колорадо, США. В сборнике «Теория и практика ионного обмена». Труды Международной конференции. Кембридж, Лондон. 1976 г.]

Для опытов использовались слабоосновные аниониты Амберлит ХЕ-270 и Амберлит ХЕ-299. Опыты показали, что процессы сорбции урана на этих анионитах протекают достаточно интенсивно, мало чем отличаются от показателей сорбции на сильноосновных анионитах. Для десорбции урана использовали традиционные десорбирующие растворы:

- серную кислоту;

- смесь серной кислоты и сульфатов щелочных металлов и аммония;

- смесь серной кислоты с хлоридами щелочных металлов и аммония;

- растворы хлоридов щелочных металлов и аммония.

Все перечисленные процессы десорбции на слабоосновных анионитах протекают аналогично процессам на сильно основных анионитах. Указывалось, что после накопления на смолах ядов (силикатов, политионатов и др.) необходима обработка смолы гидроокисью натрия.

Таким образом, процессы извлечения урана на слабоосновных анионитах сохраняют все недостатки процессов извлечения урана на сильноосновных анионитах. В связи с этим промышленного использования для сорбционного извлечения урана слабоосновные аниониты не нашли.

Техническим результатом предлагаемого изобретения является полная десорбция урана на слабоосновных анионитах с одновременной очисткой сорбентов от «ядов» и других компонентов сорбции.

Технический результат достигается тем, что в способе ионообменного извлечения урана из сернокислых растворов и пульп, включающем сорбцию урана на слабоосновных анионитах, десорбцию урана, получение готовой продукции из десорбата, десорбцию с насыщенного ураном слабоосновного анионита проводят путем обработки сорбента раствором карбоната щелочного металла или карбоната аммония с переводом анионита в ОН--форму, а урана - в растворимый устойчивый комплекс [UO2(СО3)3]-4 .

При переведении анионита в ОН--форму с анионита снимаются вместе с ураном все сорбированные компоненты, включая и те компоненты, которые в кислой среде являются «ядами» для ионообменника. При этом в систему сорбции-десорбции не вводятся другие компоненты, которые являются депрессорами в процессе сорбции урана, например нитрат- или хлорид-ионы.

При этом содержание карбоната, применяемого для десорбции в товарном растворе, минимально.

Слабоосновные аниониты в ОН--форме недиссоциированы и никакие другие анионы не поглощают и, стало быть, ионообменниками в щелочной среде не являются. В процессе щелочной обработки они полностью переходят в ОН--форму, отдавая в десорбирующий раствор все сорбированные ионы, в том числе и все «яды», попавшие в смолу в процессе сорбции. Применение гидроокисей для десорбции урана невозможно вследствие образования нерастворимых уранилгидратов, которые осаждаются в фазе смолы. Поэтому для десорбции урана должны быть использованы растворимые в воде карбонаты щелочных металлов и аммония. В этом случае уран связывается в устойчивый уранил трикарбонатный комплекс, хорошо растворимый в воде.

Реакция десорбции урана протекает в соответствии с уравнением:

R+UO2(SO4)3+Ме2 СО3способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412R-OH+Ме 4[UO2(СО3)3]+Me 2SO4

Из полученного раствора (товарного десорбата), содержащего минимальные количества исходного карбоната щелочного металла, легко выделить осадок диураната щелочного металла или аммония традиционными способами, что очень важно при использовании предлагаемого способа особенно на участках кучного или подземного выщелачивания.

При возвращении анионита в процесс сорбции протекает реакция нейтрализации ОН- формы

R-OH+H2SO4способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412R-SO 4+H2O

после чего анионит приобретает способность к ионообменным реакциям.

Пример:

Изучение сорбции урана проводили с использованием реальных, производственных растворов кучного выщелачивания. Для работы использовали слабоосновные аниониты:

- Lewatit

- Purolite A500

- АМ-3

- АМ-7

- Purolite A100

- ВП-1п.

и сильноосновный анионит АМП, имеющий наилучшие показатели по сорбции урана - для сравнения.

На фиг.1 показаны зависимости емкости образцов смол по урану от концентрации урана в равновесном растворе. Изотермы сорбции из растворов кучного выщелачивания:

Т=6 часСH2SO4=7,8 г/л
рН=1,3SO 4=34 г/л
t=32°C Fe3+=2,04 г/л

U=Var

1 - Lewatit

2 - Purolite A500

3 - АМ-3

4 - Purolite А 100

5 - ВП-1п

6 - АМП

Из рисунка видно, что емкости слабоосновных анионитов незначительно отличаются от емкости сильноосновного анионита АМП и могут быть использованы для извлечения урана из сернокислых сред.

При проведении сорбции урана в динамическом режиме из растворов кучного выщелачивания с содержанием урана около 200 мг/л были получены емкости для сильноосновного анионита АМП - 33 г/л, а для слабоосновных анионитов ВП-1п и Purolite A 100 - около 30 г/л.

В настоящее время синтезированы в промышленном объеме новые образцы слабоосновных анионитов АНС и АМН, имеющих емкость по урану на 5-10% выше емкости АМП.

Десорбцию урана на слабоосновных анионитах проводили растворами соды концентрации 100 г/л.

Для проведения предварительных опытов были использованы слабоосновные аниониты АМ-3 и АМ-7. Емкость их по урану из стандартных растворов составила 40 г/л и 45 г/л соответственно.

После обработки раствором соды в статическом режиме остаточная емкость ионитов составила соответственно 0,034 г/л и 0,008 г/л соответственно. Этот показатель обеспечивает полноту извлечения урана из сернокислых сред.

Остаточная емкость ионита АМП после обработки серной кислотой (более сильным десорбентом, чем раствор соды) составляет не менее 2 г/л.

На фиг.2 приведены результаты десорбции слабоосновных анионитов раствором соды в колонне в динамическом режиме.

На фиг.2А:

1. Purolite A 100

Десорбционный раствор 5% Na2CO3

2. AM - 7Д

Десорбционный раствор 5% Na2CO3

3. Purolite A 100

Десорбционный раствор 20% Na2 CO3

ЕИсх=43,6 г/л

ЕДесорб = 0,1

Выход товарного десорбата, имеющего рН 7,2, составил 1 объем от объема смолы. Сода практически в полном объеме расходуется на переведение смолы в ОН--форму.

Таким образом, объем товарного десорбата определяется только общей обменной емкостью смолы и концентрацией десорбирующего раствора соды.

Фиг.2Б подтверждает правильность приведенного механизма процесса десорбции урана на слабоосновных анионитах. Еисх=34,9. Для десорбции использовали раствор соды (20%) с исходным содержанием в нем урана равным 49 г/л. Несмотря на очень высокое содержание урана, остаточная емкость смолы по урану составила 0,255 г/л, т.е. образование недиссоциированной ОН--формы протекает независимо от того, какие другие анионы находятся в системе.

Концентрация урана в товарном десорбате рассчитывается по материальному балансу и составляет около 20 г/л.

Десорбция урана с использованием карбоната калия показала аналогичные результаты.

Опыты по десорбции урана на смоле АМ-7 растворами (˜ 100 г/л) карбоната аммония показали, что процесс протекает интенсивно, а остаточная после десорбции емкость по урану составила около 0,3 г/л.

Процесс извлечения урана из сернокислых сред на слабоосновный анионит протекает только из фазы раствора. Присутствие в исходном сернокислом урановом растворе инертных твердых частиц не влияет на протекание ионообменной реакции, а определяет только аппаратурное оформление процесса.

Таким образом, применение слабоосновных анионитов для извлечения урана из сернокислых сред при переработке урановых руд позволяет:

- повысить степень извлечения урана из руды за счет низких остаточных содержаний урана в смоле, подаваемой в процесс сорбции;

- снизить расходы на проведение процесса десорбции;

- получить концентрированные по урану товарные десорбаты в объеме, равном соотношению

способ ионообменного извлечения урана из сернокислых растворов   и пульп, патент № 2259412

где Еобщ. - общая обменная емкость смолы;

Ср-ра - концентрация карбоната щелочного металла или аммония в десорбирующем растворе;

- устранить негативное влияние «ядов», накапливающихся на смоле в процессе сорбции урана (силикатов и др.), поскольку слабоосновные смолы в ОН- -форме не являются сорбентами;

- устранить попадание в систему переработки руд нежелательных в сорбционном и экологическом аспекте компонентов, например нитрат- или хлорид-ионов.

Разработанный на основе сорбции урана на слабоосновных анионитах для одного из участков кучного выщелачивания способ отличается простотой технологии и аппаратурного оформления.

Класс C22B60/02 получение тория, урана или других актиноидов

способ переработки кремнийсодержащего химического концентрата природного урана -  патент 2517633 (27.05.2014)
способ извлечения урана из маточных растворов -  патент 2516025 (20.05.2014)
способ подготовки урансодержащего сырья к экстракционной переработке -  патент 2514557 (27.04.2014)
способ извлечения америция из отходов -  патент 2508413 (27.02.2014)
способ получения металлического урана -  патент 2497979 (10.11.2013)
способ извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд -  патент 2493279 (20.09.2013)
способ переработки черносланцевых руд -  патент 2493273 (20.09.2013)
способ переработки черносланцевых руд с извлечением редких металлов -  патент 2493272 (20.09.2013)
способ переработки химического концентрата природного урана -  патент 2490348 (20.08.2013)
способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления -  патент 2489510 (10.08.2013)

Класс C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами

способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения тонкодисперсного золота из глинистых отложений -  патент 2525193 (10.08.2014)
способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра -  патент 2524038 (27.07.2014)
способ извлечения рения из урансодержащих растворов -  патент 2523892 (27.07.2014)
способ переработки фосфогипса для производства концентрата редкоземельных металлов и гипса -  патент 2520877 (27.06.2014)
способ извлечения урана из маточных растворов -  патент 2516025 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)
сорбционное извлечение ионов железа из кислых хлоридных растворов -  патент 2514244 (27.04.2014)
сорбционное извлечение ионов кобальта из кислых хлоридных растворов -  патент 2514242 (27.04.2014)
Наверх