тахометр частотный яловеги

Классы МПК:G01P3/48 путем измерения частоты генерируемого тока или напряжения 
Автор(ы):,
Патентообладатель(и):Яловега Николай Васильевич (RU),
Яловега Сергей Николаевич (RU)
Приоритеты:
подача заявки:
2004-04-09
публикация патента:

Изобретение относится к приборам, предназначенным для измерения частоты вращения валов двигателей различной мощности, а именно к индукционным тахометрам. Тахометр частотный содержит источник возбуждения ЭДС в виде постоянного магнита С-образной формы, площадь поперечного сечения полюсов которого меньше площади поперечного сечения средней его части, напротив полюсов магнита размещены полюса магнитопровода, замыкающего магнитный поток, и между ними, перпендикулярно магнитному потоку установлен немагнитный токопроводящий плоский диск, зубцы которого перекрывают, по крайней мере, один из полюсов магнита, при этом площадь зубца диска не менее чем на 15% больше площади полюса магнита, а величина воздушного зазора между полюсами магнита и магнитопровода не превышает минимальной величины линейного размера полюса магнита, полюса магнитопровода содержат дополнительные обмотки, а сам магнитопровод выполнен в виде крышки, которая снабжена опорными наружными торцевыми поверхностями для крепления тахометра к объекту измерения. Технический результат: тахометр с малыми габаритами и весом, высокой надежностью и помехоустойчивостью. 2 з.п. ф-лы, 4 ил. тахометр частотный яловеги, патент № 2258228

тахометр частотный яловеги, патент № 2258228 тахометр частотный яловеги, патент № 2258228 тахометр частотный яловеги, патент № 2258228 тахометр частотный яловеги, патент № 2258228

Формула изобретения

1. Тахометр частотный, содержащий постоянный магнит с обмотками на его полюсах, включенных встречно, и индуктор-модулятор, выполненный в виде диска с зубцами, который жестко закреплен на валу, отличающийся тем, что постоянный магнит выполнен С-образной формы, площадь поперечного сечения полюсов меньше площади поперечного сечения средней его части, напротив полюсов магнита размещены полюса магнитопровода, замыкающего магнитный поток, и между ними перпендикулярно магнитному потоку установлен немагнитный токопроводящий плоский диск, зубцы которого перекрывают, по крайней мере, один из полюсов магнита, при этом площадь зубца диска не менее чем на 15% больше площади полюса магнита, а величина воздушного зазора между полюсами магнита и магнитопровода не превышает минимальной величины линейного размера полюса магнита.

2. Тахометр по п.1, отличающийся тем, что полюса магнитопровода, замыкающего магнитный поток, содержат дополнительные обмотки.

3. Тахометр по п.1, отличающийся тем, что магнитопровод, замыкающий магнитный поток, выполнен в виде крышки, которая снабжена опорными наружными торцевыми поверхностями для крепления тахометра к объекту измерения.

Описание изобретения к патенту

Изобретение относится к области приборостроения и измерительной техники и может найти применение в различных областях промышленности в качестве датчика обратной связи автоматизированных и неавтоматизированных систем.

К приборам, предназначенным для измерения частоты вращения валов различных двигателей малой, средней или большой мощности, а также различного рода механизмов и машин, где требуется точное измерение частоты вращения, - к индукционным тахометрам.

При измерении частоты вращения валов некоторых объектов к измерительным приборам предъявляются жесткие требования в отношении минимального тормозного воздействия со стороны прибора на измеряемый объект, минимальных веса и габаритов, величины и формы выходного сигнала.

Предлагаемый тахометр частотный может использоваться автономно будучи дистанционно соединенным с измерителем частоты. Малогабаритный прибор относится к датчикам генераторного типа, имеет высокий уровень сигнала на выходе, прост по конструкции, позволяет производить измерения при значительных окружных скоростях ротора, оказывает малое тормозное воздействие на измеряемый объект, имеет высокую чувствительность и разрешающую способность.

Известен бесконтактный оптический частотный тахометр, содержащий диск с отверстиями или прорезями, пересекающими луч света, направляемый на фотодиод. Пропорционально частоте вращения контролируемого вала оптическим датчиком формируются электрические импульсы, преобразующиеся измерителем частоты в цифровой сигнал.

Однако оптические или светооптические приборы требуют дополнительный источник питания света, имеют большие габариты для диска с отверстиями, потому что у них ограниченная полоса пропускания частот.

Известен магнитоиндукционный датчик частоты вращения, например патент РФ №2097769, кл. G 01 Р 3/48 от 27.11.97 г. Сущность патента: разомкнутая стержневая магнитная система датчиков выполнена с немагнитной вставкой между торцами полюса и сердечником обмотки, в немагнитном корпусе размещена магнитная система, состоящая из магнита, немагнитной вставки и ферромагнитного сердечника с сигнальной обмоткой на нем.

Индуктором-модулятором (возбудителем) системы является зубчатое магнитное колесо, размещенное на валу, связанное с валом контролируемого объекта. Зубец колеса, проходя близко к торцу магнитной системы, возбуждает поток и благодаря вставке изменяет потокосцепление витков на обмотке стержня, что служит сигналом в виде импульса, регистрируемого на вторичном приборе, например частотомере. Импульс служит пороговым значением измеряемой величины.

Недостатком данного технического решения является то, что, во-первых, между постоянным магнитом и зубчатым ферромагнитным сердечником обмотки существует взаимная связь, а немагнитная вставка не защищает постоянный магнит от размагничивания при каждом прохождении зубца, имеется в виду неупругое размагничивание, что приводит к быстрому выходу из строя прибора: амплитуда сигнала непрерывно изменяется по величине с прохождением каждого зубца.

Кроме того, сложная конструкция и нетехнологичность данного технического решения является серьезным препятствием для внедрения в промышленность.

Наиболее близким к заявляемому техническому решению является автомобильный датчик скорости: патент Японии №3142990 В2, кл. G 01 P 3/487 от 17.06.1993 г. Автомобильный датчик скорости состоит: из зубчатого колеса, надетого на вал, который вращается вместе с колесом контролируемого объекта, тахометра, с магнитным П-образным сердечником с обмотками возбуждения и собственно датчика.

Обмотки датчика соединены между собою дифференциально. Сигнал измеряется частотомером. Амплитуда импульсного сигнала в данном устройстве может быть постоянной при подключении обмоток датчика к стабилизирующему источнику питания.

Датчик не размагничивается, как в предыдущем случае.

Однако конструкция получается громоздкой, а полезный сигнал слабый, потому что кривая намагничивания электротехнической стали должна быть использована только на линейном участке.

Устройство сложное, громоздкое, дорогостоящее и не технологичное в изготовлении, требует дополнительный источник питания для датчика.

В основу предлагаемого изобретения положена задача создания тахометра частотного, имеющего малые габариты и вес, имеющего высокую надежность и помехоустойчивость.

Поставленная задача достигается за счет того, что в предлагаемом тахометре частотном источником возбуждения ЭДС является постоянный магнит С-образной формы. Площадь поперечного сечения полюсов меньше площади поперечного сечения средней его части, напротив полюсов магнита размещены полюса магнитопровода, замыкающего магнитный поток, и между ними, перпендикулярно магнитному потоку, установлен немагнитный токопроводящий плоский диск, зубцы которого перекрывают, по крайней мере, один из полюсов магнита, при этом площадь зубца диска не менее чем на 15% больше площади полюса магнита, а величина воздушного зазора между полюсами магнита и магнитопровода не превышает минимальной величины линейного размера полюса магнита, полюса магнитопровода содержат дополнительные обмотки, а сам магнитопровод выполнен в виде крышки, которая снабжена опорными наружными торцевыми поверхностями для крепления тахометра к объекту измерения.

Конструктивное исполнение предлагаемого тахометра позволяет: исключить из состава тахометра источник питания, использовать плоский безинерционный индуктор-модулятор, который выполнен в виде медного или алюминиевого диска с зубцами, размещенного в малом немагнитном зазоре, минимизированном за счет конструктивного выполнения магнитопровода, замыкающего магнитные силовые линии. Силовые линии замыкаются по пассивному или активному (содержащему обмотки) магнитопроводу, позволяя использовать жесткую (нераспухшую) часть магнитного потока, повышая эффективность прибора и формируя благоприятную форму импульса.

Данное изобретение позволяет измерять частоту вращения вала контролируемого объекта с минимальным тормозным воздействием со стороны тахометра на измеряемый объект при малых габаритах, весе, без стороннего источника питания при длительном сроке службы прибора и его высокой надежности.

На чертежах дана схема выполнения тахометра частотного:

на фиг.1 дан общий вид в разрезе;

на фиг.2 изображен диск с зубцами индуктора-модулятора;

на фиг.3 - вид в разрезе магнитопровода с дополнительными обмотками;

на фиг.4 - график зависимости ЭДС (е, Вольт) тахометра от числа оборотов индуктора-модулятора (n, об/мин) и частотная характеристика тахометра (f, Герц от n, об/мин). Расчетная характеристика 1 показывает зависимость ЭДС тахометра от числа оборотов индуктора-модулятора. Для сравнения приведена кривая 2, полученная экспериментальным путем. Кривая 3 представляет частотную характеристику данного тахометра.

Тахометр частотный включает в себя постоянный магнит 1 С-образной формы, который закреплен жестко на корпусе 2 через регулировочную изолирующую прокладку 3 с помощью хомута 4 и винтов 5. Магнит 1 обращен своими полюсами 6 к магнитопроводу 7 с полюсами 8, которые образуют немагнитный зазор. Между полюсами 6 и 8 установлен немагнитный токопроводящий плоский диск 9, зубцы 10 которого перекрывают, по крайней мере, один из полюсов 6 магнита 1. Площадь зубца 10 диска 9 должна быть не менее чем на 15% больше площади полюса 6 магнита 1. Величина магнитного зазора не должна превышать минимальной величины линейного размера полюсов магнита 1. Например, при выполнении магнита 1 прямоугольной формы эта величина равна длине меньшей стороны прямоугольника. Диск 9 индуктора-модулятора установлен на валу 11, который свободно вращается в подшипниковом узле 12 и соединен через муфту с валом измеряемого объекта (на чертеже не указано). Магнитопровод 7 выполнен в виде крышки корпуса, которая снабжена опорными наружными торцевыми поверхностями 13, которыми тахометр крепится к объекту измерения.

Работа тахометра частотного основана на принципе взаимодействия движущегося электропроводящего тела с неоднородным магнитным полем. В зубце 10 индуктора-модулятора - диска 9 при пересечении им зазора между полюсами 6 и 8 наводятся вихревые токи, пропорциональные линейной скорости движения и градиенту магнитного потенциала поля заданной напряженности.

Вторичное магнитное поле, соответствующее наведенным токам, воздействует на поле возбуждения, вызывая пульсации в магнитопроводе 7 и полюсах 6 магнита 1, которые воспринимаются включенными встречно измерительными обмотками, преобразующими эти пульсации в ЭДС сигнал.

Зубцы 10 диска 9 в поперечном сечении перекрывают полюса 6 С-образного магнита, как показано на фиг.2.

Величина тока в зубце прямо пропорциональна ЭДС и обратно пропорциональна омическому сопротивлению контура зубца: i=е/r, где i - величина тока в элементе; е=Blv - ЭДС в зубце; В - индукция в воздушном зазоре; v - линейная скорость зубца; l - характерный размер зубца по радиусу.

Намагничивающая сила в зубце: F=iw=i, где w - число активных эквивалентных проводников в элементе.

Форма поля возбуждения под полюсами в плоскости движения индуктора модулятора с достаточной степенью точности может быть принята косинусоидальной, что достигается за счет выбора конфигурации магнита.

Магнитное поле наведенных токов также будет изменятся по закону косинуса при стационарной скорости индуктора модулятора и иметь противоположное полю возбуждения направление.

Отсутствие реактивных составляющих сопротивления элемента зубца позволяет считать совпадающие по фазе наведенные токи и ЭДС.

Приведенные формулы справедливы для случая однородного магнитного поля. При расчете тахометра частотного следует в правую часть вводить множитель cos тахометр частотный яловеги, патент № 2258228. ЭДС сигнала в измерительных обмотках изменяется по закону синуса:

тахометр частотный яловеги, патент № 2258228

где Ф - поток, соответствующий наведенным токам.

Расчет производится по максимуму ЭДС сигнала, поэтому поток можно выразить как:

тахометр частотный яловеги, патент № 2258228

где lз - длина немагнитного (воздушного) зазора; lM - средняя длина магнитной силовой линии; тахометр частотный яловеги, патент № 2258228 о - относительная магнитная проницаемость воздушного зазора; sЗ - средняя площадь поперечного сечения немагнитного зазора; sM - средняя площадь поперечного сечения магнитопровода.

ЭДС в катушке индуктивности можно вычислить по формуле:

ek=4,44fФw, где

f - частота импульсов в потоке, определяемая по формуле:

тахометр частотный яловеги, патент № 2258228

где z - число зубцов на диске ротора; n - угловая скорость ротора, об/мин.

Геометрический размер зубца 10 диска 9 индуктора-модулятора в плоскости вращения ограничен размером полюса 6 постоянного магнита. В противном случае форма сигнала будет отличаться от синусоиды.

Толщина диска 9 индуктора-модулятора существенно не влияет на величину сигнала. При увеличении толщины диска с зубцами уменьшается сопротивление элемента зубца 10, но одновременно снижается напряженность поля возбуждения за счет увеличения немагнитного зазора. Экспериментально установлено, что площадь зубца 10 диска 9 индуктора-модулятора должна быть не менее чем на 15% больше площади полюса 6 магнита 1.

Повышение частоты на выходе прибора за счет увеличения числа зубцов на диске индуктора-модулятора сопряжено с увеличением числа пар полюсов системы возбуждения, поскольку каждой паре полюсов при заданном диаметре ротора соответствует строго определенное число зубцов.

Отклонение от номинального числа зубцов приведет к искажению формы кривой измерения во времени сигнала на выходе прибора.

Измерение частоты переменного тока сигнала тахометра производится стандартными частотомерами, имеющими большое входное сопротивление, иначе магнитная система будет подмагничиваться токами сигнала.

Эксперименты с макетным образцом тахометра показали, что токи порядка 10-2 А не оказывают никакого влияния на характеристику прибора, а влиянием скин-эффекта можно пренебречь, если толщина ротора не превышает 5 мм, а значение окружной скорости не более 50 м/сек.

Экспериментальные исследования магнитного потока показали, что при зазоре до 5 мм рассеяние магнитного потока незначительное. Далее рассеяние начинает интенсивно расти. Поэтому, минимизируя потери магнитного потока, размер 5 мм при проектировании электромагнитных систем является пороговым. С другой стороны, минимизируя при проектировании габаритные размеры частотометра, как прибора в целом, толщина индуктора-модулятора реально лежит в пределах 1 - 2 мм. Немагнитный зазор на 0,3 - 0,5 мм больше. По конструктивным соображениям полюс С-образного магнита удобно применять в сечении прямоугольным с размером стороны: 4 - 5 мм.

Тормозной момент тахометра определяется, в основном, сопротивлением окружающей среды и трением в подшипниковом узле.

Описанный тахометр частотный может быть использован для измерения частоты вращения валов электродвигателей любого типа (асинхронных, постоянного тока и других), как микромощных, так и большой мощности, турбин, турбокомпрессоров, а также стендовых испытательных установок, где требуется измерение частоты вращения с высокой точностью и в широком диапазоне изменения частоты вращения.

Класс G01P3/48 путем измерения частоты генерируемого тока или напряжения 

датчик скорости -  патент 2521716 (10.07.2014)
способ обнаружения вращения и направления вращения ротора -  патент 2517825 (27.05.2014)
способ измерения параметров углового движения объектов -  патент 2516207 (20.05.2014)
индукционный датчик частоты вращения -  патент 2505822 (27.01.2014)
устройство передачи данных скорости -  патент 2497131 (27.10.2013)
способ измерения параметров углового движения контролируемых объектов -  патент 2491555 (27.08.2013)
бесконтактный датчик скорости вращения и положения ротора -  патент 2488122 (20.07.2013)
способ измерения параметров углового движения контролируемых объектов -  патент 2466411 (10.11.2012)
устройство для измерения параметров углового движения объектов -  патент 2465605 (27.10.2012)
способ определения скорости вращения погружных асинхронных электродвигателей -  патент 2463612 (10.10.2012)
Наверх