низколегированная сталь

Классы МПК:C22C38/50 с титаном или цирконием
C22C38/58 с более 1,5 % марганца по массе
Автор(ы):, , , , , , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Северсталь" (RU)
Приоритеты:
подача заявки:
2004-05-17
публикация патента:

Изобретение относится к металлургии, в частности, к конструкционным свариваемым сталям, используемым при производстве лонжеронов и других несущих узлов большегрузных автомобилей, работающих в условиях Крайнего Севера. Низколегированная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,08-0,15; кремний 0,1-0,6; марганец 1,0-1,8; хром 0,3-0,9; медь 0,1-0,5; ванадий 0,02-0,1; алюминий 0,01-0,06; никель 0,7-1,5; азот 0,002-0,015; кальций 0,002-0,030; ниобий 0,01-0,05; титан 0,004-0,035; сера не более 0,010; фосфор не более 0,020; железо - остальное. Техническим результатом изобретения является повышение ударной вязкости до 44 Дж/см2 при температуре -70°С при сохранении свариваемости. 3 табл.

Формула изобретения

Низколегированная сталь, содержащая углерод, кремний, марганец, хром, медь, ванадий, алюминий, никель, азот, кальций и железо, отличающаяся тем, что она дополнительно содержит ниобий, титан, серу и фосфор при следующем соотношении содержания элементов, мас.%:

Углерод 0,08-0,15

Кремний 0,1-0,6

Марганец 1,0-1,8

Хром 0,3-0,9

Медь 0,1-0,5

Ванадий 0,02-0,1

Алюминий 0,01-0,06

Никель 0,7-1,5

Азот 0,002-0,015

Кальций 0,002-0,030

Ниобий 0,01-0,05

Титан 0,004-0,035

Сера Не более 0,010

Фосфор Не более 0,020

Железо Остальное

Описание изобретения к патенту

Изобретение относится к металлургии, в частности к конструкционным свариваемым сталям, используемым при производстве лонжеронов и других несущих узлов большегрузных автомобилей для работы в условиях Крайнего Севера.

Для изготовления лонжеронов и других несущих узлов большегрузных самосвалов, работающих при температурах до -70°С, используют горячекатаные листы толщиной 8-50 мм из свариваемой хладостойкой низколегированной стали. Горячекатаные стальные листы должны сочетать высокую прочность и вязкость при отрицательных температурах. Требуемые механические свойства горячекатаных листов в состоянии поставки приведены в табл.1

Таблица 1
Механические свойства листов из низколегированной стали
низколегированная сталь, патент № 2255999 т, Н/мм2 низколегированная сталь, патент № 2255999 в, Н/мм2 низколегированная сталь, патент № 2255999, %KCV-70, Дж/см 2Хол. загиб на 180°d=3a
не менее 690не менее 790не менее 16 не менее 40удовл.
Примечание: d - диаметр оправки; а - толщина листа

Известен состав низколегированной стали, имеющей следующий химический состав, мас.%:

Углерод 0,11-0,16

Марганец 1,0-1,4

Кремний 0,15-0,35

Титан 0,08-0,14

Медь 0,02-0,30

Алюминий 0,02-0,06

Хром 0,02-0,15

Никель 0,02-0,15

Молибден 0,005-0,015

Ванадий 0,005-0,015

Железо Остальное [1]

Недостатки стали известного состава состоят в том, что горячекатаные листы имеют недостаточную прочность и ударную вязкость при температуре -70°С.

Известна также низколегированная сталь, содержащая, мас.%:

Углерод 0,05-0,2

Марганец 0,15-1,6

Фосфор 0,015

Кремний не более 0,5

Сера 0,002-0,008

Медь 0,2-0,5

Алюминий менее 0,1

Ниобий и/или менее 0,05

Ванадий 0,1

Молибден 0,5

Хром менее 0,5

Никель менее 0,3

Кальций 0,0001-0,005

Железо Остальное [2]

Недостатками стали указанного состава является низкая прочность и ударная вязкость толстых горячекатаных листов при температуре -70°С.

Наиболее близкой по своему составу и свойствам к предлагаемой стали является низколегированная свариваемая сталь следующего состава, мас.%:

Углерод 0,12-0,18

Марганец 1,0-1,8

Кремний 0,4-0,7

Хром 0,4-0,8

Алюминий 0,01-0,05

Ванадий 0,04-0,08

Азот 0,009-0,015

Медь 0,1-0,4

Никель 0,01-0,34

Кальций 0,001-0,05

Железо Остальное [3] - прототип

Недостатки стали известного состава состоят в том, что она имеет низкие прочностные свойства, недостаточную ударную вязкость при температуре -70°С.

Техническая задача, решаемая изобретением, состоит в повышении ударной вязкости при температуре -70°С при сохранении свариваемости.

Для решения поставленной технической задачи сталь, содержащая углерод, кремний, марганец, хром, медь, ванадий, алюминий, никель, азот, кальций и железо, дополнительно содержит ниобий, титан, серу и фосфор при следующем соотношении содержания элементов, мас.%:

Углерод 0,08-0,15

Кремний 0,1-0,6

Марганец 1,0-1,8

Хром 0,3-0,9

Медь 0,1-0,5

Ванадий 0,02-0,10

Алюминий 0,01-0,06

Никель 0,7-1,5

Азот 0,002-0,015

Кальций 0,002-0,030

Ниобий 0,01-0,05

Титан 0,004-0,035

Сера не более 0,010

Фосфор не более 0,020

Железо Остальное

Сущность изобретения состоит в том, что сталь предложенного химического состава, дополнительно легированная ниобием и титаном, в термообработанном состоянии приобретает ячеистую структуру, увеличивающую долю вязкой составляющей в изломе образца. За счет этого достигается повышение вязкостных свойств толстых листов при температурах до -70°С при сохранении свариваемости.

Сера и фосфор, как неизбежные примеси, при указанных концентрациях не оказывают отрицательного влияния на свойства стали. Это упрощает и удешевляет ее производство.

Углерод упрочняет сталь. При содержании углерода менее 0,08% не достигается требуемая прочность стали, а при его содержании более 0,15% ухудшается свариваемость стали.

Кремний раскисляет сталь, повышает ее прочность. При концентрации кремния менее 0,1% прочность стали ниже допустимой, а при концентрации более 0,6% снижается пластичность, сталь не выдерживает испытания на холодный загиб.

Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 1,0% прочность и износостойкость стали недостаточны. Увеличение содержания марганца более 1,8% приводит к снижению вязкости при температуре -70°С.

Хром повышает прочность и вязкость стали. При его концентрации менее 0,3% прочность ниже допустимых значений. Увеличение содержания хрома более 0,9% приводит к потере пластичности из-за роста карбидов.

Медь введена для повышения устойчивости аустенита, что особенно важно при термообработке толстых листов. Увеличение содержания меди более 0,5% приводит к графитизации низколегированной стали, которая снижает комплекс механических свойств. Уменьшение содержания меди менее 0,1% ухудшает вязкостные и прочностные свойства низколегированной стали после термообработки.

Ванадий в сочетании с алюминием являются сильными раскисляющими и карбидообразующими элементами. При содержании ванадия менее 0,02% снижается прочность стали в термообработанном состоянии. Увеличение содержания ванадия более 0,10% нецелесообразно, т.к. не ведет к дальнейшему улучшению свойств, а лишь увеличивает расход легирующих.

Алюминий раскисляет сталь и измельчает зерно. Он связывает азот в нитриды, уменьшая его вредное влияние на вязкостные свойства. При содержании алюминия менее 0,01% его влияние мало, вязкостные свойства стали ухудшаются. Увеличение содержания этого элемента более 0,06% загрязняет сталь неметаллическими включениями и приводит к снижению прочностных характеристик.

Никель способствует повышению прочности стали и вязкости, но при его содержании более 1,5% ухудшается свариваемость. Снижение содержания никеля менее 0,7% приводит к потере пластичности, листы не выдерживают испытания на холодный загиб.

Азот в стали является элементом, упрочняющим сталь при выпадении мелкодисперсных карбонитридных частиц. Однако при концентрации азота более 0,015% вязкостные и пластические свойства стали ниже допустимого уровня. Снижение содержания азота менее 0,002% приводит к разупрочнению стали и требует увеличения легированности, ухудшающей свариваемость.

Кальций оказывает модифицирующее действие, что позволяет улучшить свойства толстых листов в Z-направлении, повысить ударную вязкость при температуре -70°С. При содержании кальция менее 0,002% его положительное воздействие проявляется слабо, толстые листы имеют низкие механические свойства. Увеличение содержания кальция более 0,030% приводит к росту количества и размеров неметаллических включений, снижению пластичности и ударной вязкости низколегированной стали.

Ниобий способствуют измельчению микроструктуры низколегированной стали по толщине листа, повышению хладостойкости. Однако, если содержание ниобия будет более 0,05%, произойдет ухудшение свариваемости стали, что недопустимо. При снижении содержания ниобия менее 0,01% не достигается высокая ударная вязкость при температуре -70°С.

Титан является сильным карбидообразующим элементом, упрочняющим сталь, повышающим ударную вязкость при температуре -70°С. Снижение содержания титана менее 0,004% ухудшает прочность и вязкость стали. Однако при сварке титан полностью выгорает. Количество титана в стали не должно превышать 0,035% из-за ухудшения ударной вязкости.

Сера и фосфор в данной стали являются вредными примесями, их концентрация должна быть как можно меньшей. Однако при концентрации серы не более 0,010% и фосфора не более 0,020% их отрицательное влияние на свойства стали незначительно. В то же время, более глубокая десульфурация и дефосфорация стали существенно удорожат ее производство, что нецелесообразно.

Низколегированные стали различного химического состава выплавляли в электродуговой печи. В ковше сталь раскисляли ферросилицием, ферромарганцем, легировали феррохромом, феррованадием, ферротитаном, вводили металлические алюминий, ниобий и никель, силикокальций. С помощью синтетических шлаков удаляли избыток серы и фосфора, избыток азота устраняли вакуумированием стали. Химический состав выплавляемых сталей приведен в табл.2.

Сталь разливали в слябы и подвергали гомогенизирующему отжигу при температуре 680°С. Затем слябы нагревали до температуры 1230°С и прокатывали на толстолистовом стане 2800 в листы толщиной 10 мм. Листы подвергали термическому улучшению (нагрев до температуры 920°С, закалка водой, отпуск при температуре 660°С). После термообработки от листов отбирали пробы и производили испытания механических свойств.

низколегированная сталь, патент № 2255999

Результаты испытания механических свойства листов из сталей различных составов приведены в табл.3.

Таблица 3
Свойства термообработанных листов из низколегированных сталей
№ составанизколегированная сталь, патент № 2255999 T, Н/мм2 низколегированная сталь, патент № 2255999 в, Н/мм2 низколегированная сталь, патент № 2255999, %KCV-70, Дж/см 2Хол. загиб на 180° d=3a Свариваемость
1.590680 1927неудовл. удовл.
2. 690790 2941удовл. удовл.
3. 71080022 44удовл.удовл.
4.720 8201640 удовл.удовл.
5.740850 1422неудовл. неудовл
6. 11001305 1114неудовл. удовл.

Из таблиц 2 и 3 следует, что предложенная низколегированная сталь (составы №2-4) имеет наиболее высокие показатели ударной вязкости на образцах с острым надрезом при температуре испытания -70°С. При обеспечении всего комплекса заданных свойств сталь сохраняет свариваемость.

В случаях запредельных значений концентрации легирующих элементов (варианты №1 и №5) происходит снижение ударной вязкости при температуре -70°С, а образцы из стали состава №5, кроме того, не выдерживают испытания на свариваемость и холодный загиб.

Известная сталь состава №6 имеет низкую ударную вязкость при температуре -70°С. Поэтому она непригодна для изготовления лонжеронов и других несущих узлов большегрузных автомобилей, эксплуатируемых при температуре ниже -40°С (до -70°С).

Технико-экономические преимущества предложенной низколегированной стали заключаются в том, что дополнительное введение в ее состав 0,01-0,05% ниобия и 0,004-0,035% титана обеспечивает повышение ударной вязкости при температуре -70°С при сохранении свариваемости.

Кроме того, поскольку в предложенной стали допускается содержание примесей серы и фосфора (не более 0,010% и не более 0,020% соответственно), упрощается технология и удешевляется ее производство.

В качестве базового объекта принята сталь-прототип. Использование предложенной стали позволит повысить рентабельности производства лонжеронов и других несущих узлов большегрузных автомобилей для работы в условиях Крайнего Севера на 8-10%.

Литературные источники, использованные при составлении описания изобретения:

1. Авт. свид. СССР №1652373, МПК С 22 С 38/50, 1991 г.

2. Заявка Японии №5247521, МПК С 22 С 38/42, 1977 г.

3. Патент Российской Федерации №2200768, МПК С 22 С 38/46, С 22 С 38/58, 2003 г.

Класс C22C38/50 с титаном или цирконием

трубная сталь -  патент 2525874 (20.08.2014)
аустенитно-ферритная сталь с высокой прочностью -  патент 2522914 (20.07.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
стали со структурой пакетного мартенсита -  патент 2507297 (20.02.2014)
сталь -  патент 2502821 (27.12.2013)
теплостойкая сталь для водоохлаждаемых изложниц -  патент 2494167 (27.09.2013)
трубная заготовка из легированной стали -  патент 2480532 (27.04.2013)
способ производства холоднокатаной ленты для холодной вырубки -  патент 2479643 (20.04.2013)
способ производства холоднокатаной ленты из низкоуглеродистых марок стали -  патент 2479641 (20.04.2013)
низколегированная литейная сталь -  патент 2467089 (20.11.2012)

Класс C22C38/58 с более 1,5 % марганца по массе

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
трубная сталь -  патент 2525874 (20.08.2014)
холоднодеформируемая сталь повышенной прочности и состоящее из нее плоское изделие -  патент 2524027 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
коррозионностойкая высокопрочная сталь -  патент 2519337 (10.06.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь -  патент 2514901 (10.05.2014)
высокопрочная среднеуглеродистая комплекснолегированная сталь -  патент 2510424 (27.03.2014)
высокопрочная гальванизированная листовая сталь и способ ее изготовления -  патент 2510423 (27.03.2014)
Наверх