способ геофизической разведки для определения гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в трехмерном межскважинном пространстве

Классы МПК:G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Инжиниринговый центр" (RU)
Приоритеты:
подача заявки:
2004-07-15
публикация патента:

Изобретение может быть использовано в нефтегазовой геологии для оптимизации размещения разведочных и эксплуатационных скважин на исследуемых нефтегазоперспективных объектах. Способ включает проведение трехмерных сейсморазведочных работ 3D, бурение скважин с отбором керна, электрический, радиоактивный, акустический и сейсмический каротаж, испытание скважин. По данным бурения и геофизических исследований скважин определяют эталонные модельные сейсмические и скважинные спектрально-временные образы нефтегазопродуктивных коллекторов и их спектрально-временные атрибуты. По данным трехмерной сейсморазведки 3D в районе скважин определяют эталонные экспериментальные спектрально-временные образы нефтегазопродуктивных пористых коллекторов и их объемные спектральные сейсмические атрибуты на основе применения спектрально-временного анализа данных сейсморазведки 3D и геофизических исследований скважин в целевом интервале записи и количественной оценки его результатов. Осуществляют последующую взаимную корреляцию величин гидропроводности и емкости по данным бурения и геофизических исследований скважин с эталонными модельными сейсмическими и скважинными спектрально-временными атрибутами и объемными спектральными сейсмическими атрибутами по данным сейсморазведки 3D в районе скважин. Выбирают оптимальные объемные спектральные сейсмические атрибуты с наибольшими значениями коэффициентов взаимной корреляции и строят регрессионные зависимости оптимальных эталонных объемных спектральных сейсмических атрибутов, либо комплексного атрибута, с величинами гидропроводности и емкости нефтегазопродуктивных пористых коллекторов по данным бурения и геофизических исследований скважин. По всем трассам сейсмического временного куба в целевом интервале записи проводят спектрально-временной анализ и его количественную спектрально-временную параметризацию по оптимальным объемным спектральным сейсмическим атрибутам, либо комплексному атрибуту, с построением кубов атрибутов и последующим их пересчетом по установленным регрессионным зависимостям в кубы гидропроводности и емкости. Технический результат: повышение надежности и точности обоснования геологических условий размещения разведочных и эксплуатационных скважин.

Формула изобретения

Способ геофизической разведки для определения гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в трехмерном межскважинном пространстве, включающий проведение наземных сейсморазведочных работ, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротажи, испытание скважин и суждение по полученным данным о гидропроводности и емкости нефтегазопродуктивных пористых коллекторов, отличающийся тем, что в межскважинном пространстве проводят трехмерные сейсморазведочные работы 3D, по данным бурения и геофизических исследований скважин определяют эталонные модельные сейсмические и скважинные спектрально-временные образы нефтегазопродуктивных коллекторов и их спектрально-временные атрибуты, а по данным трехмерной сейсморазведки 3D в районе скважин определяют эталонные экспериментальные спектрально-временные образы нефтегазопродуктивных пористых коллекторов и их объемные спектральные сейсмические атрибуты на основе применения спектрально-временного анализа данных сейсморазведки 3D и геофизических исследований скважин в целевом интервале записи и количественной оценки его результатов, представляющей собой отношение энергии спектров высоких частот и больших времен к энергии спектров низких частот и малых времен, а также произведение удельных по частоте спектральных плотностей энергетического частотного спектра на средневзвешенную и максимальную частоту, и произведение удельных по времени спектральных плотностей энергетического временного спектра на средневзвешенное и максимальное время, с последующей взаимной корреляцией величин гидропроводности и емкости по данным бурения и геофизических исследований скважин с эталонными модельными сейсмическими и скважинными спектрально-временными атрибутами и объемными спектральными сейсмическими атрибутами по данным сейсморазведки 3D в районе скважин; выбором оптимальных объемных спектральных сейсмических атрибутов с наибольшими значениями коэффициентов взаимной корреляции и построением регрессионных зависимостей оптимальных эталонных объемных спектральных сейсмических атрибутов, либо комплексного атрибута, с величинами гидропроводности и емкости нефтегазопродуктивных пористых коллекторов по данным бурения и геофизических исследований скважин; затем по всем трассам сейсмического временного куба в целевом интервале записи проводят спектрально-временной анализ и его количественную спектрально-временную параметризацию по оптимальным объемным спектральным сейсмическим атрибутам, либо комплексному атрибуту, с построением кубов атрибутов и последующим их пересчетом по установленным регрессионным зависимостям в кубы гидропроводности и емкости, т.е. определением гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в любой точке трехмерного межскважинного пространства.

Описание изобретения к патенту

Изобретение относится к нефтегазовой геологии и может быть использовано для оптимизации заложения разведочных и эксплуатационных скважин на исследуемых объектах в зонах повышенных значений гидропроводности и емкости нефтегазопродуктивных пористых коллекторов по комплексу данных трехмерной наземной сейсмической разведки 3D, геофизических исследований и испытания скважин, изучения керна.

Известен способ геофизической разведки для определения фильтрационно-емкостных свойств нефтегазопродуктивных отложений в межскважинном пространстве, выбранный в качестве ближайшего аналога (Патент на изобретение №2210094), включающий бурение скважин с отбором керна, электрический, радиоактивный, акустический и сейсмический каротаж, изучение керна, проведение наземных двумерных сейсморазведочных работ 2D, а также последующую обработку полученной информации для определения проницаемости и емкости целевых отложений по данным бурения и геофизических исследований скважин (ГИС), модельных сейсмических эталонных спектрально-временных образов (СВО) нефтегазопродуктивного интервала разреза и их спектрально-временных параметров (СВП), экспериментальных сейсмических эталонных СВО в районе скважин и их СВП на основе применения спектрально-временного анализа (СВАН) данных сейсморазведки и количественной оценки его результатов, определяемой отношением энергии спектров высоких частот и больших времен к энергии спектров низких частот и меньших времен, а также произведением удельных по частоте и времени спектральных плотностей энергетических спектров на частоту и время их максимумов, с последующей взаимной корреляцией величин проницаемости и емкости по данным бурения с эталонными СВП по данным сейсморазведки в районе скважин, выбором оптимальных СВП с наибольшими коэффициентами взаимной корреляции (КВК) и построением регрессионных зависимостей оптимальных СВП с величинами проницаемости и емкости, последующим проведением по всем сейсмическим профилям непрерывно в целевом интервале записи СВАН, определением оптимальных СВП с последующим их пересчетом по регрессионным зависимостям в значения проницаемости и емкости в любой точке межскважинного пространства и построением карт в изолиниях проницаемости и емкости, т.е. получения двумерного результата на горизонтальной плоскости.

Недостатками известного способа являются:

- проведение наземной сейсмической разведки по профилям, т.е. двумерной сейсморазведки 2D, данные которой не учитывают возможный пространственный сейсмический снос и характеризуются недостаточной детальностью, особенно в сложных сейсмогеологических условиях и на эксплуатационном этапе разбуривания нефтегазоперспективных объектов;

- потеря точности работ происходит и на стадии построения карт СВП, проницаемости и емкости, поскольку при проведении изолиний большое значение имеет интерполяция значений СВП, проницаемости и емкости между профилями, расстояние между которыми практически всегда не соотносится с интервалами изменения фильтрационно-емкостных свойств целевых отложений;

- корреляционная связь между СВП и проницаемостью не всегда характеризуется приемлемым КВК и устойчивостью.

Известен также способ геофизической разведки для определения продуктивности нефтяного пласта в межскважинном пространстве (Патент на изобретение №2098851). В известном способе продуктивность нефтяного пласта определяется на основе ее корреляционной связи с гидропроводностью, которая, в свою очередь, определяется с использованием средних, постоянных значений радиуса поровых каналов для каждого типа геологического разреза, и эффективной удельной емкости. Типы геологического разреза выявляются и картируются на основе СВАН сейсмической записи, проэталонированной по данным бурения и ГИС (Патент на изобретение №2183335). Емкость коллекторов, представляющая собой произведение коэффициента пористости на эффективную толщину, определяется на основе ее корреляционной зависимости от псевдоакустических скоростей по данным сейсморазведки (Копилевич Е.А. и др. Определение параметра удельной емкости коллектора в межскважинном пространстве. Геология нефти и газа, №8, М., 1988; Копилевич Е.А. Изменение скорости распространения продольных волн в связи с емкостными свойствами коллекторов. Геология нефти и газа, №10, М., 1995).

Основными недостатками известных способов являются:

- неучет пространственного сейсмического сноса и недостаточная детальность сейсморазведки 2D;

- допущение о постоянстве радиуса поровых каналов в зонах развития одного типа геологического разреза;

- недостаточная точность определения псевдоакустических скоростей, особенно в сейсмогеологических условиях малой толщины нефтегазопродуктивных отложений (<30 м);

- ограниченная разрешающая способность и вследствие этого имеющаяся возможность применения способа только при значительных перепадах псевдоакустических скоростей (>300-400 м/сек).

В силу указанных выше недостатков могут быть допущены ошибки в определении проницаемости, гидропроводности и емкости нефтегазопродуктивных пластов и, как следствие, неоптимальное размещение скважин и увеличение затрат на освоение объектов.

Технической задачей, на решение которой направлено данное изобретение, является повышение точности, надежности и обоснованности геологических условий заложения разведочных и эксплуатационных скважин на основе определения гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в трехмерном межскважинном пространстве.

Способ геофизической разведки для определения гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в трехмерном межскважинном пространстве включает бурение скважин с отбором керна, электрический, радиоактивный, акустический и сейсмический каротаж, изучение керна и испытание скважин, последующее проведение трехмерных сейсморазведочных работ 3D продольными волнами по методу общей глубинной точки (МОГТ).

По совокупности данных бурения и ГИС определяют гидропроводность и емкость нефтегазопродуктивных пористых коллекторов с использованием известных методов.

По данным акустического, сейсмического, радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели целевого интервала разреза в скважинах, рассчитываются синтетические сейсмические трассы, по которым проводят СВАН, определяют модельные СВО и их спектрально-временные атрибуты (СВА). По данным ГИС определяют СВО целевого интервала кривых ГИС и их скважинные (вертикальные) СВА (Патент на изобретение №2201606).

По данным трехмерной сейсморазведки 3D на основе СВАН определяют эталонные экспериментальные СВО и их объемные спектральные сейсмические атрибуты (ОССА) в районе скважин, соответствующие временному интервалу продуктивных отложений.

Модельные, скважинные СВА и экспериментальные ОССА должны быть одинаковыми с КВК>0,75, что свидетельствует об обоснованном определении СВО и ОССА по данным сейсморазведки 3D. По наибольшим КВК выбирают оптимальные для конкретных сейсмогеологических условий, наиболее надежные ОССА.

СВО данных сейсморазведки 3D - временного куба, т.е. зависимости сейсмических амплитуд от трех координат - x, y, t - A=f(x,y,t) - представляет собой четырехмерную зависимость сейсмических амплитуд от координат х, y, способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 , t, или два куба зависимостей A=f(x,способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 ,t) и A=f(y,способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 ,t), где способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 - переменная центральная частота спектров сейсмической записи; t - ось времен; x, y - пространственные координаты.

СВО характеризуется количественно с использованием ОССА по каждому из двух кубов, с возможностью получения шести кубов ОССА, т.е. трехмерной зависимости ОССА от трех координат - OCCA=f(x,y,t).

ОССА в количестве шести атрибутов определяются по энергетическим частотному (по оси частот - f) и временному (по оси времен - t) спектрам трехмерных результатов СВАН - кубам СВО.

ОССА по оси частот:

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

где

S(A2)(t) - спектральная плотность частотного энергетического спектра, пропорциональная квадрату амплитуды сейсмической записи в целевом временном интервале (способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 t);

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 н - начальная (низкая) частота спектра на уровне 10% от его максимума;

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 к - конечная (высокая) частота спектра на уровне 10% от его максимума;

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

Таким образом, ОССА1 - это отношение энергии высоких частот к энергии низких частот энергетического частотного спектра.

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

где способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 =способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 к-способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 н; способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 - средневзвешенная частота.

Таким образом, ОССА2 - это произведение удельной спектральной плотности энергетического частотного спектра на средневзвешенную частоту.

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

где способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 mах - максимальная частота энергетического частотного спектра на уровне 30-70% от его максимума.

Таким образом, ОССА3 - это произведение удельной спектральной плотности энергетического частотного спектра на максимальную частоту с выбором уровня (30-70%) ее определения.

ОССА по оси времен:

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

где S(A2)(способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 ), tн, tк, способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 t, tcp, способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 - те же параметры энергетического спектра, только по оси времен (t).

Значения ОССА по оси t определяются сдвигом целевого временного интервала (способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 t) на постоянную избранную величину.

Таким образом, из двух кубов СВО можно получить шесть кубов OCCA1-6 в координатах x, y, t.

Все ОССА изначально классифицируются по их структуре в соответствии с принципами структурно-формационной интерпретации (Структурно-формационная интерпретация сейсмических данных. Мушин И.А., Бродов Л.Ю., Козлов Е.А., Хатьянов Ф.И. М.: Недра, 1990).

Структура OCCA1 такова, что главное его назначение состоит в выявлении и фиксации секвенстратиграфических рангов в анализируемом интервале разреза и оценке их соотношений по динамической выразительности, т.е. форме сигнала, а следовательно, его спектра и ОССА, отображающих совокупность физических свойств целевого интервала разреза, обусловленную в том числе и структурой пустотного пространства или иначе - величиной площади сечения каналов пористой среды, по которым происходит фильтрация флюида, что, как известно, характеризует проницаемость коллекторов и их гидропроводность, но главным образом суммарный проницаемый объем, т.е. гидропроводность - способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884

Кпр - коэффициент проницаемости,

h эф - эффективная толщина коллекторов,

способ геофизической разведки для определения гидропроводности   и емкости нефтегазопродуктивных пористых коллекторов в трехмерном   межскважинном пространстве, патент № 2253884 - вязкость флюида, величина для месторождения постоянная.

Структура симметричного OCCA1 по оси времен - ОССА 4 - позволяет рассчитывать на выявление направленности седиментации, т.е. оценивать степень прогрессивности или регрессивности анализируемого интервала разреза, а следовательно, и характер изменения проницаемости и гидропроводности коллекторов по глубине.

ОССА2 и ОССА3 характеризуют анализируемый интервал разреза главным образом по интегральным типам слоистости и степени ее выраженности, т.е. макро-, миди-, тонкослоистости, типам цикличности, ритмичности, что прямо связано с объемом пустотного пространства или емкостью.

ОССА5 и ОСCA 6, имеющие ту же структуру, что и OCCA2, ОССА 3, но определяемые по оси времен, могут характеризовать особенности распространения слоистости (емкости) по анализируемому интервалу разреза.

Таким образом, ОССА по своей физической и геологической сути могут быть использованы для определения гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в трехмерном межскважинном пространстве.

Оптимальные, наиболее надежные экспериментальные эталонные ОССА в районе скважин, либо комплексный ОССА, представляющий собой свертку оптимальных ОССА по известным современным алгоритмам кокрайкинга или искусственных нейронных сетей, коррелируются со значениями гидропроводности и емкости нефтегазопродуктивных пористых коллекторов по данным бурения и ГИС с построением графиков ОССАopt=f(К пр· hэф) и ОССАopt =f(Кп· hэф), где К п - коэффициент пористости.

При значениях КВК>0,75 кубы оптимальных или комплексного ОССА пересчитываются в кубы значений гидропроводности и емкости нефтегазопродуктивных пористых коллекторов в координатах x, y, t.

Таким образом, настоящее предложение позволяет определять гидропроводность и емкость нефтегазопродуктивных пористых коллекторов в любой точке трехмерного межскважинного пространства.

Это обеспечивает резкое снижение затрат на бурение последующих разведочных и эксплуатационных скважин.

Класс G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ геофизической разведки залежей углеводородов -  патент 2527322 (27.08.2014)
способ геохимической разведки -  патент 2525644 (20.08.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2521762 (10.07.2014)
модульная донная станция -  патент 2521218 (27.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)
способ разработки нефтяных залежей -  патент 2513895 (20.04.2014)
способ поиска и добычи нефти -  патент 2507381 (20.02.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий -  патент 2501047 (10.12.2013)
Наверх