стенд для исследования компрессоров

Классы МПК:G01M15/00 Испытание машин и двигателей
F04D27/02 способы и устройства для устранения помпажа 
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" (RU)
Приоритеты:
подача заявки:
2004-06-16
публикация патента:

Изобретение относится к компрессоростроению и предназначено для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций. Задачей предлагаемого технического решения является дросселирование исследуемого компрессора на испытательном стенде, обеспечивающее плавное мягкое изменение гидравлического сопротивления выходной сети и, в случае необходимости или аварийной ситуации, мгновенное уменьшение гидравлического сопротивления выходной сети. Технический результат достигается на стенде для исследования компрессоров, который содержит привод, мультипликатор, исследуемый компрессор, на входе которого установлен мерный коллектор и успокоительная камера с выравнивающим устройством, а на выходе - воздухосборник, дроссельное устройство и выходной трубопровод, причем дроссельное устройство выполнено в виде части выходного трубопровода, имеющего коллектор. При этом в коллекторе выполнены отверстия и сообщены с полостью выходного трубопровода, а сам коллектор соединен с регулируемым источником подвода рабочего тела высокого давления. 4 з.п.ф-лы, 7 ил.

стенд для исследования компрессоров, патент № 2253854

стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854 стенд для исследования компрессоров, патент № 2253854

Формула изобретения

1. Стенд для исследования компрессоров, содержащий привод, мультипликатор, исследуемый компрессор, на входе которого установлен мерный коллектор и успокоительная камера с выравнивающим устройством, а на выходе - воздухосборник, дроссельное устройство и выходной трубопровод, отличающийся тем, что дроссельное устройство выполнено в виде части выходного трубопровода, имеющего коллектор, при этом в коллекторе или части выходного трубопровода выполнены отверстия и сообщены с полостью выходного трубопровода, а сам коллектор соединен с регулируемым источником подвода рабочего тела высокого давления.

2. Стенд по п.1, отличающийся тем, что коллектор дроссельного устройства расположен снаружи или внутри части выходного трубопровода.

3. Стенд по п.1, отличающийся тем, что по периметру коллектора или части выходного трубопровода выполнены отверстия.

4. Стенд по п.3, отличающийся тем, что отверстия, выполненные по периметру коллектора или части выходного трубопровода, расположены в виде одного или нескольких поясов.

5. Стенд по п.3, отличающийся тем, что отверстия, выполненные по периметру коллектора или части выходного трубопровода, расположены под углом к оси выходного трубопровода.

Описание изобретения к патенту

Изобретение относится к компрессоростроению и предназначено для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций.

Известен стенд для испытания осевого компрессора, авторское свидетельство №946517 от 29.01.1981 г., содержащий на выходе осерадиальный диффузорный канал с осесимметричным кольцевым дросселем. При работе стенда принудительным перемещением кольцевого дросселя вдоль оси компрессора перекрывают радиальный диффузорный канал, увеличивая гидравлическое сопротивление, то есть изменяя гидравлическую характеристику выходной сети стенда.

Известен стенд для испытания турбокомпрессора, авторское свидетельство №241772 от 15.04.68 г., который имеет дроссельное устройство, выполненное в виде двух взаимно перекрывающихся дисков с окнами, установленных в кольцевом осевом канале на выходе из исследуемого компрессора. Принудительным от внешнего привода смещением одного диска относительно другого перекрываются окна, уменьшая площадь проходного сечения и увеличивая гидравлическое сопротивление выходной сети испытательного стенда.

Недостатком указанных технических решений является наличие механизма перемещения дросселя (дроссельных колец или дроссельных дисков) с помощью электрического двигателя или вручную, что не позволяет быстро и эффективно перекрыть дроссель и уменьшить гидравлическое сопротивление выходной сети испытательного стенда.

При проведении испытаний компрессора на испытательном стенде, при снятии его характеристик, постепенно перекрывают дроссель, увеличивают гидравлическое сопротивление выходной сети стенда и смещают режим работы испытываемого компрессора к границе устойчивой работы. Практически всегда программой испытания компрессора на стенде проводятся плановые, а также бывают неожиданные и случайные выходы режимов работы компрессора в область неустойчивой работы. В этих обстоятельствах для избежания аварии и поломки исследуемого компрессора и испытательного стенда необходимо мгновенно вывести работу компрессора из неустойчивой области, то есть необходимо мгновенно уменьшить гидравлическое сопротивление выходной сети испытательного стенда. Электромеханические системы управления и привода дросселя с силу инерционности не позволяют выполнить мгновенное изменение гидравлического сопротивления сети. В связи с этим для мгновенного выхода исследуемого компрессора из неустойчивого режима работы дополнительно к регулируемому дросселю на испытательном стенде устанавливают автономный антипомпажный клапан с собственной системой управления. В случае входа исследуемого компрессора в область неустойчивой работы антипомпажный клапан открывает перепуск воздуха из выходной сети между исследуемым компрессором и дросселем. Одновременно открывают и дроссель стенда.

Описанные испытательные компрессорные стенды обладают существенным недостатком: беззащитность исследуемого компрессора и самого испытательного стенда в экстремальной ситуации от аварии.

Применяемые антипомпажные клапаны с механическим или воздушным приводом в выходной системе между исследуемым компрессором и входным дросселем также достаточно инерционны. А требование одновременного открытия и антипомпажного клапана, и выходного дросселя стенда, имеющих независимое друг от друга автономное управление с пульта, усложняет работу по проведению исследования компрессора и требует дополнительного внимания в возможной сложной аварийной ситуации.

В случае несанкционированного аварийного или случайного отключения электрической энергии питания систем управления дросселем во время проведения испытания компрессора на режиме глубокого дросселирования или в случае выхода из строя механизма управления дросселем и антипомпажным клапаном дроссель и клапан остаются в закрытом положении, система становится неуправляемой. В результате возникает чрезвычайная аварийная ситуация, приводящая к поломке компрессора.

Задачей предлагаемого технического решения является дросселирование исследуемого компрессора на испытательном стенде, обеспечивающее плавное мягкое изменение гидравлического сопротивления выходной сети и, в случае необходимости или аварийной ситуации, мгновенное уменьшение гидравлического сопротивления выходной сети.

Технический результат достигается на стенде для исследования компрессоров, который содержит привод, мультипликатор, исследуемый компрессор, на входе которого установлен мерный коллектор и успокоительная камера с выравнивающим устройством, а на выходе - воздухосборник, дроссельное устройство и выходной трубопровод, причем дроссельное устройство выполнено в виде части выходного трубопровода, имеющего коллектор. При этом в коллекторе выполнены отверстия по его периметру и сообщены с полостью выходного трубопровода, а сам коллектор соединен с регулируемым источником подвода рабочего тела высокого давления. Коллектор дроссельного устройства расположен снаружи или внутри части выходного трубопровода. По периметру коллектора или части выходного трубопровода выполнены отверстия, при этом отверстия выполнены в виде одного или нескольких поясов и расположены под углом к оси выходного трубопровода.

Из газовой динамики известно, что изменением расхода воздуха в трубопроводе достигается изменение скорости потока. Это следует из уравнения, в общем случае связывающего изменение скорости потока в трубопроводе с возможными внешними воздействиями [Г.Н.Абрамович. "Прикладная газовая динамика", Москва, изд-во "Наука", 1969 г., стр.188-191].

2-1)dC/C=dF/F-dG/G-dL/a 2-(К-1)dQнap/Aa2-KdLтр /a2,

где M - число Маха (М) потока;

С - скорость потока;

F - площадь проходного сечения трубопровода;

G - расход воздуха;

L - механическая работа;

Qнар - теплообмен с окружающей средой;

L тp - работа трения;

К - коэффициент адиабаты;

а - скорость звука;

А - тепловой эквивалент механической работы.

В случае течения в трубопроводе постоянного сечения (dF=0) при отсутствии внешней работы (dL=0), отсутствии теплообмена (dQнap=0) и без трения (dLтp=0) уравнение примет вид

(M2-1)dC/C=-dG/G.

Видно, что при дозвуковой скорости потока в трубопроводе подвод дополнительного воздуха к потоку (dG>0) приводит к увеличению скорости потока (dC>0) вплоть до скорости звука и, следовательно, запиранию трубопровода.

Это свойство предлагается использовать в стенде для испытания компрессоров с целью изменения гидравлического сопротивления выходной компрессорной сети.

На фиг.1 представлена общая схема стенда для исследования компрессоров.

Стенд на фиг.1 содержит двигатель привода 1, мультипликатор 2, исследуемый компрессор 3, успокоительную камеру 4 с выравнивающим воздушный поток устройством 5. На входе в успокоительную камеру 4 расположен мерный коллектор 6 для измерения расхода воздуха через исследуемый компрессор 3, а на выходе из компрессора 3 имеется воздухосборник 7 компрессора 3 и в выходном трубопроводе 9 установлено дроссельное устройство 8, имеющее штуцер 12.

На фиг.2 и 4 показано продольное сечение дроссельного устройства 8, представляющее собой часть выходного трубопровода 9 с коллектором 10, расположенным вокруг выходного трубопровода 9, непосредственно на его наружной поверхности и соединенного с внутренней полостью выходного трубопровода 9 с отверстиями 11, выполненными по периметру его стенки, через которые внутрь выходного трубопровода 9 подается воздух повышенного давления от внешнего источника (на чертежах не показан) через штуцер 12.

Отверстия 11 на поверхности выходного трубопровода 9 могут быть выполнены однопоясными (фиг.2) или многопоясными (фиг.4).

На фиг.6 показано поперечное сечение А-А фиг.2 дроссельного устройства 8 в виде части выходного трубопровода 9 с установленным на нем коллектором 10.

На фиг.3 и 5 показано продольное сечение дроссельного устройства 8 в виде части выходного трубопровода 9 с коллектором 10, расположенным на внутренней поверхности выходного трубопровода 9 и соединенного с внутренней полостью выходного трубопровода 9 отверстиями 11, выполненными по периметру коллектора 10, через которые внутрь выходного трубопровода 9 подается воздух повышенного давления от внешнего источника (на чертежах не показан) через штуцер 12.

Отверстия 11 в коллекторе 10 могут быть выполнены однопоясными (фиг.3) или многопоясными (фиг.5).

На фиг.7 показано поперечное сечение В - В фиг.3 дроссельного устройства 8 в виде части выходного трубопровода 9 с коллектором 10, расположенным внутри выходного трубопровода 9.

Работа стенда для исследования компрессоров осуществляется следующим образом.

При работе стенда исследуемый компрессор 3 приводится во вращение двигателем привода 1 через мультипликатор 2. Воздух через мерный коллектор 6 и успокоительную камеру 4 с выравнивающим воздушный поток устройством 5 поступает в исследуемый компрессор 3. Из компрессора 3 сжатый воздух поступает в воздухосборник 7 и в выходной трубопровод 9, в котором расположено дроссельное устройство 8.

К коллектору 10 через штуцер 12 подводится воздух повышенного давления от внешнего регулируемого источника (на чертежах не показан). Регулирование давления и расхода подаваемого внутрь выходного трубопровода воздуха изменяет гидравлическое сопротивление выходной сети компрессорного стенда и расход воздуха исследуемого компрессора.

При дросселировании, в случае возникновения неустойчивой работы исследуемого компрессора 3, штуцером 12 прекращается подача воздуха в отверстия 11 дроссельного устройства 8, при этом практически мгновенно уменьшается гидравлическое сопротивление выходной сети компрессора 3 и режим работы компрессора 3 переходит в область устойчивой работы.

В качестве дросселирующей среды наряду с воздухом может быть использована вода, которая под давлением через отверстия 11 на поверхности выходного трубопровода 9 подается внутрь трубопровода за исследуемым компрессором 3. Подача воды в дроссельную систему особенно эффективна при исследовании на стенде высоконапорных компрессоров, имеющих высокую температуру воздуха на выходе. Вода, испаряясь, снижает температуру воздуха в выходном трубопроводе стенда. Благодаря этому повышается ресурс выходной системы стенда и повышается пожарная безопасность.

Дроссельное устройство благодаря очень малой инерционности одновременно выполняет функцию антипомпажного клапана. По сравнению с существующими системами раздельного управления дроссельной системой и антипомпажным клапаном дроссельное устройство 8 одновременно совмещает в одном элементе и свойства дросселя и антипомпажного клапана, управляемые одним элементом.

Оси отверстий 11, расположенные на поверхности части выходного трубопровода 9 или коллектора 10, через которые подается воздух, выполнены под углом стенд для исследования компрессоров, патент № 2253854 к поверхности трубопровода. Угол стенд для исследования компрессоров, патент № 2253854 может изменяться в пределах от 0 до 180°. Направление вдуваемого в трубопровод воздуха осуществляют по основному потоку, против основного потока, поперек основного потока и под любым углом к основному потоку в выходном трубопроводе стенда.

Заявляемое техническое решение обладает важным свойством безопасной защиты исследуемого компрессора и стенда. В случае, если в силу внешних обстоятельств неожиданно прекращается подача рабочего тела высокого давления в дроссель, гидравлическое сопротивление выходного трубопровода за компрессором уменьшается, режим работы исследуемого компрессора практически мгновенно возвращается в исходное, безопасное положение по своей характеристике.

Класс G01M15/00 Испытание машин и двигателей

установка для определения окислительной стойкости углерод-углеродного композиционного материала -  патент 2529749 (27.09.2014)
стенд для испытания сопла -  патент 2528467 (20.09.2014)
способ определения общего технического состояния смазочной системы двигателя внутреннего сгорания -  патент 2527272 (27.08.2014)
способ и устройство для оценки массы свежего воздуха в камере сгорания, способ оценки полного заполнения, блок записи для этих способов и автомобиль, оборудованный устройством для оценки -  патент 2525862 (20.08.2014)
способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины -  патент 2525061 (10.08.2014)
способ испытаний газотурбинного двигателя -  патент 2525057 (10.08.2014)
способ замеров параметров выхлопных газов двс -  патент 2525051 (10.08.2014)
генератор импульсов давления в акустических полостях камер сгорания и газогенераторов жрд -  патент 2523921 (27.07.2014)
способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания и устройство для его осуществления -  патент 2523595 (20.07.2014)
универсальная установка для исследования рабочих процессов двс -  патент 2523594 (20.07.2014)

Класс F04D27/02 способы и устройства для устранения помпажа 

способ диагностики помпажа компрессора газотурбинного двигателя -  патент 2527850 (10.09.2014)
многоступенчатый компрессор турбомашины -  патент 2525997 (20.08.2014)
лопатки вентилятора с изменяемым углом установки -  патент 2523928 (27.07.2014)
стравливатель воздуха, имеющий инерциальный фильтр в тандемном роторе компрессора -  патент 2519009 (10.06.2014)
способ управления комбинированным устройством и комбинированное устройство, реализующее данный способ -  патент 2516091 (20.05.2014)
диффузор, имеющий лопатки с отверстиями, и газотурбинный двигатель, содержащий такой диффузор -  патент 2515575 (10.05.2014)
кожух компрессора с оптимизированными полостями -  патент 2514459 (27.04.2014)
воздушный коллектор в газотурбинном двигателе -  патент 2494287 (27.09.2013)
кожух для рабочего колеса турбомашины -  патент 2491447 (27.08.2013)
способ и устройство для регулирования компрессора для хладагента и их использование в способе охлаждения потока углеводородов -  патент 2490565 (20.08.2013)
Наверх