способ определения серебра

Классы МПК:C01G5/00 Соединения серебра
G01N21/62 системы, в которых исследуемый материал возбуждается, в результате чего он испускает свет или изменяет длину волны падающего света
G01N31/22 с помощью химических индикаторов
Автор(ы):, ,
Патентообладатель(и):Красноярский государственный университет (RU)
Приоритеты:
подача заявки:
2003-11-25
публикация патента:

Изобретение относится к области аналитической химии элементов, а именно к методам определения серебра, и может быть использовано при определении серебра в природных водах и технологических растворах. Способ определения серебра включает приготовление раствора серебра (1), переведение его в комплексное соединение и измерение интенсивности люминесценции. Серебро выделяют из растворов силикагелем, химически модифицированным меркаптогруппами, и измеряют интенсивность люминесценции комплекса серебра (1) с меркаптогруппами на поверхности силикагеля при 77К при облучении ультрафиолетовым светом. Техническим результатом является упрощение методики, снижение относительного предела обнаружения и расширение диапазона определяемых концентраций.

Формула изобретения

Способ определения серебра, включающий приготовление раствора серебра (1), переведение его в комплексное соединение и измерение интенсивности люминесценции, отличающийся тем, что серебро выделяют из растворов силикагелем, химически модифицированным меркаптогруппами, и измеряют интенсивность люминесценции комплекса серебра (I) с меркаптогруппами на поверхности силикагеля при 77К при облучении ультрафиолетовым светом.

Описание изобретения к патенту

Изобретение относится к области аналитической химии элементов, а именно к методам определения серебра, и может быть использовано при определении серебра в природных водах и технологических растворах.

Для определения серебра в объектах различного вещественного состава используется простой в аппаратурном оформлении, достаточно чувствительный и селективный люминесцентный метод.

Известен способ флуориметрического определения серебра, основанный на образовании флуоресцирующего ассоциата между иодидным комплексным анионом серебра и катионом красителя бриллиантового зеленого [Kobasakalis Vassilioss. Fluorimetric determination of silver with brilliant green in aqueous systems and its application in photographic fixing solutions // Anal. Lett. 1994. V.27. №14. P.2789-2796]. Способ предусматривает выполнение следующих операций: к раствору, содержащему ионы серебра, добавляют H2 SO4 или NaOH до рН 3, прибавляют 1 мл KJ (5 г/л) и 0,75 мл J2 (1 г/л), разбавляют водой до 50 мл, выдерживают 10 мин и измеряют интенсивность флуоресценции при длинах волн возбуждения и испускания 256 нм и 521 нм соответственно.

К недостаткам способа можно отнести многостадийность, использование разнообразных реактивов.

Наиболее близким к предлагаемому способу по технической сущности и достигаемым результатам является способ определения серебра [Oue M., Kimura К., Shono Т. Extraction-spectrofluorimetric determination of silver ion using benzothiacrown ether and eosin. //Analyst. 1988. V.113. №4. P.551-553]. Способ основан на использовании ион-парной системы, включающей бензатиакраунэфир (I) (2,3-бензо-7,10,13-тритиа-1,4-диоксациклопентадека-2-ен) в качестве лиганда и эозин (II) (2,4,5,7-тетрабромфлуоресцеин) в качестве флуоресцирующего иона. К раствору пробы, содержащей 1-20 мкг серебра, прибавляют 0,1 мл 9,24·10-4 М раствора I, 1,8 мл боратно-фосфатного раствора с рН 8,6 и 3 мл воды, экстрагируют 5 мл 5·10-6 М раствором II в дихлорэтане. Экстракт отделяют и определяют интенсивность флуоресценции при длинах волн возбуждения и излучения 536 нм и 558,8 нм соответственно. Градуировочный график линеен в диапазоне концентраций серебра 2-15 нг/мл.

Техническим результатом является упрощение методики, снижение относительного предела обнаружения, расширение диапазона определяемых концентраций.

Указанный технический результат достигается тем, что в способе определения серебра, включающем приготовление раствора серебра (I), переведение его в комплексное соединение и измерение интенсивности люминесценции, новым является то, что серебро выделяют из растворов силикагелем, химически модифицированным меркаптогруппами, и измеряют интенсивность люминесценции комплекса серебра (I) с меркаптогруппами на поверхности силикагеля при 77К при облучении ультрафиолетовым светом.

В исследуемый раствор с рН 2-7, содержащий серебро, вносят сорбент - силикагель, химически модифицированный меркаптогруппами, интенсивно перемешивают в течение 5 мин, растворы декантируют, сорбент помещают в стальную кювету, охлаждают до температуры жидкого азота и измеряют интенсивность люминесценции при 560 нм.

Сущность способа заключается в том, что находящееся в растворе серебро в широком диапазоне рН 2-7 количественно извлекается силикагелем, химически модифицированным меркаптогруппами. В процессе сорбции серебра на поверхности сорбента образуются комплексные соединения серебра с меркаптогруппами, ковалентно закрепленными на поверхности силикагеля. Данные поверхностные комплексы, охлажденные до температуры жидкого азота (77К), обладают интенсивной люминесценцией при их облучении ультрафиолетовым светом.

Сорбция в статическом режиме протекает быстро (время установления сорбционного равновесия составляет 2-3 мин) и количественно (коэффициент распределения достигает 1·104 см3/г), что позволяет сконцентрировать и полностью извлечь серебро даже из очень разбавленных растворов в динамическом режиме. Предел обнаружения серебра при навеске сорбента 0,1 г составляет 0,5 мкг. Относительный предел обнаружения серебра при использовании 10 мл раствора составляет 0,05 мкг/мл.

В предлагаемом способе содержание серебра в произвольном объеме раствора должно быть не менее 0,5 мкг. Данное количество серебра на 0,1 г сорбента является той минимальной концентрацией, которую удается зарегистрировать на существующих приборах относительно сигнала фона. Градуировочный график линеен в диапазоне 0,1-100 мкг серебра на 0,1 г сорбента. При использовании 100 мл и 1000 мл раствора относительный предел обнаружения соответственно снижается до 5·10-3 и 5·10-4 мкг/мл.

Пример 1 (прототип). В градуированную пробирку вводят раствор, содержащий 2 мкг серебра, прибавляют 0,1 мл 9,24·10 -4 М раствора II, 1,8 мл боратно-фосфатного раствора с рН 8,6 и 3 мл воды, экстрагируют 5 мл 5·10-6 М раствором I в дихлорэтане. Органическую фазу отделяют, переносят в кювету и измеряют интенсивность люминесценции при 558,8 нм. Количество серебра находят по градуировочному графику. Найдено 1,40±0,08 мкг.

Пример 2 (предлагаемый способ). К раствору, содержащему серебро в количестве 1,0 мкг в 10 мл, прибавляют 0,1 г сорбента - силикагеля, химически модифицированного меркаптогруппами, перемешивают в течение 5 мин, раствор декантируют, сорбент переносят в кювету, охлаждают до температуры жидкого азота и измеряют интенсивность люминесценции при 560 нм. Количество серебра находят по градуировочному графику. Найдено 1,0±0,2 мкг.

Пример 3 (предлагаемый способ). 1 л раствора, содержащий 1 мкг серебра, пропускают через хроматографическую колонку, содержащую 0,1 г сорбента, со скоростью 1 мл/мин, промывают водой. Сорбент вынимают из колонки, переносят в кювету, охлаждают до температуры жидкого азота и измеряют интенсивность люминесценции при 560 нм. Содержание серебра находят по градуировочному графику. Найдено 0,95±0,05 мкг.

Таким образом, предлагаемый способ позволяет определять серебро в количестве 0,1-100 мкг при использовании 0,1 г сорбента. Способ характеризуется простотой выполнения и не требует использования дорогостоящего оборудования. Получаемые сорбаты устойчивы длительное время без изменения их спектрально-люминесцентных характеристик.

Класс C01G5/00 Соединения серебра

способ получения наночастиц серебра -  патент 2526390 (20.08.2014)
способ стабилизации наночастиц биогенных элементов ферментами -  патент 2504582 (20.01.2014)
способ извлечения серебра из сточных вод и технологических растворов -  патент 2497760 (10.11.2013)
способ получения нанокомпозиций серебра на основе синтетических водорастворимых полимеров -  патент 2485051 (20.06.2013)
способ получения раствора ионного серебра -  патент 2471018 (27.12.2012)
способ подготовки углеводородного газа и установка для его осуществления -  патент 2470865 (27.12.2012)
способ получения водных медно-серебряных композиций -  патент 2420298 (10.06.2011)
способ получения концентрата оксидов серебра -  патент 2390583 (27.05.2010)
способ получения наночастиц серебра в водной среде -  патент 2390344 (27.05.2010)
способ получения наночастиц серебра -  патент 2385293 (27.03.2010)

Класс G01N21/62 системы, в которых исследуемый материал возбуждается, в результате чего он испускает свет или изменяет длину волны падающего света

способ контроля структуры стали -  патент 2518292 (10.06.2014)
устройство для анализа люминесцирующих биологических микрочипов -  патент 2510959 (10.04.2014)
способ оценки загрязнения атмосферного воздуха тяжелыми металлами и другими химическими элементами с помощью эпифитных мхов -  патент 2463584 (10.10.2012)
устройство и способ науглероживания -  патент 2429309 (20.09.2011)
диссоциативный люминесцентный наносенсор -  патент 2414696 (20.03.2011)
лазерно-люминесцентный концентратомер, способ его использования и способ изготовления светокабельного наконечника (варианты) -  патент 2356032 (20.05.2009)
высокоэффективная жидкая среда с распределенными наночастицами, способ и устройство для изготовления среды и способ обнаружения утечки среды -  патент 2326921 (20.06.2008)
радиолюминесцентный излучатель вуф-диапазона -  патент 2277234 (27.05.2006)
способ определения параметров простых и сложных частиц износа в маслосистеме двигателя -  патент 2275618 (27.04.2006)
автоматический анализатор концентрации микроорганизмов в воздухе -  патент 2263896 (10.11.2005)

Класс G01N31/22 с помощью химических индикаторов

Наверх