способ лазерофореза имоксипина

Классы МПК:A61N5/067 с использованием лазерного луча
Автор(ы):, , ,
Патентообладатель(и):АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ (RU)
Приоритеты:
подача заявки:
2003-07-08
публикация патента:

Изобретение относится к медицине. Полость наружного слухового прохода заполняют 1% раствором имоксипина. Подводят дистальный торец моноволоконного световода к поверхности трансплантата из твердой мозговой оболочки плода человека, закрывающей перфорационное отверстие в барабанной перепонке, и оказывают воздействие излучением гелий-неонового лазера с максимальной выходной мощностью 10-20 мВт, диаметром светового пятна 4-6 мм, плотностью потока мощности 35-80 Вт/см2, разовой дозой 3,0-5,5 Дж/см2 и временем экспозиции 3-5 минут. Способ позволяет добиться более глубокого проникновения и быстрого всасывания поверхностью трансплантата, материнского ложа, на котором он находится, кожей наружного слухового прохода лекарственного препарата, обладающего антиоксидантным действием. 1 табл.

Формула изобретения

Способ лазерофореза имоксипина, включающий нанесение на ткани медицинского раствора и последующее воздействие на него гелий-неоновым лазером, отличающийся тем, что полость наружного слухового прохода заполняют 1% раствором имоксипина, подводят дистальный торец моноволоконного световода к поверхности трансплантата из твердой мозговой оболочки плода человека, закрывающей перфорационное отверстие в барабанной перепонке, и оказывают воздействие лазерным излучением с максимальной выходной мощностью 10-20 мВт, диаметром светового пятна 4-6 мм, плотностью потока мощности 35-80 Вт/см 2, разовой дозой 3,0-5,5 Дж/см2 и временем экспозиции 3-5 мин.

Описание изобретения к патенту

Изобретение относится к медицине.

Известны способы внутриполостного низкоэнергетического облучения околоносовых пазух гелий-неоновым лазером (ГНЛ) в ринологии (1).

Внутриполостная лазерная физиотерапия проводилась после промывания околоносовых пазух с помощью моноволоконного световода, дистальный конец которого вводился в пазуху (верхнечелюстную или лобную) через катетер. Лазерная физиотерапия проводилась с использованием серийно выпускаемых ГНЛ ЛГ-38 с длиной волны 0,633 мкм и величиной энергетической экспозиции 10 Дж/см. В качестве светопровода применялось кварцполимерное моноволокно в защитной полиэтиленовой оболочке с диаметром светонесущей жилы 200 мкм длиной 1 м с оплавленным дистальным торцом. Курс лечения составлял от 2 до 9 сеансов (в среднем 5).

Недостатками аналога являются:

1. Воздействие внутриполостного ГНЛ недостаточно эффективно без его одновременного использования с другими лекарственными препаратами, только на фоне комплексного лечения заболевания околоносовых пазух эффект лазерной физиотерапии будет наиболее выражен.

2. Нормализация биохимических показателей (перекисного окисления липидов и антиоксидантной защиты) у больных с заболеванием околоносовых пазух будет являться критерием эффективности проводимой лазеротерапии.

В качестве прототипа взят способ действия гелий-неонового лазера на ткани среднего уха в присутствии биологических жидкостей и медицинских растворов (2).

Экспериментально изучалась глубина проникновения лазерной энергии в слизистую оболочку и костную ткань, взятые из барабанной буллы кролика, в аспекте обоснования использования лазерного излучения при консервативном лечении хронического гнойного среднего отита, с целью стимуляции репаративных процессов в операционной ране, в раннем послеоперационном периоде. В ходе экспериментальных исследований было выяснено, что биологические среды ввиду высоких коэффициентов поглощения лазерной энергии препятствует доступу ее в полном объеме к облучаемому объекту. Прозрачные медицинские растворы ввиду низких коэффициентов поглощения практически не оказывают ослабляющего действия при прохождении через них луча лазера. Глубина проникновения в них лазерного излучения составляет 8-12 см, что в сотни раз превышает глубину проникновения в кровь, сыворотку крови и в тысячи раз - в слизистую оболочку, костную и хрящевую ткань.

Недостатками прототипа являются:

1. Эффективность внутриполостного воздействия гелий-неонового лазера будет недостаточна при сохранении в облучаемой полости раневого экссудата.

2. Ускорение репаративных процессов в послеоперационной полости при внутриполостном воздействии лазерного излучения наиболее эффективно в сочетании с различными лекарственными препаратами.

Целью данного изобретения является более глубокое проникновение и быстрое всасывание поверхностью трансплантата, материнского ложа, на котором он находится, кожей наружного слухового прохода лекарственного препарата, обладающего антиоксидантным действием (имоксипин 1% раствор) под влиянием гелий-неонового лазера.

Данная цель решается тем, что в полость наружного слухового прохода, заполненную 1% раствором имоксипина, вводился дистальный торец моноволоконного световода к поверхности трансплантата из твердой мозговой оболочки плода человека, закрывающего перфорационное отверстие в барабанной перепонке. Воздействие гелий-неоновым лазером при помощи лазерной физиотерапевтической установки “ЛА-2” с длиной волны 0,63 мкм, максимальной выходной мощностью 10-20 мВт, диаметр светового пятна колебался от 4 до 6 мм, плотность потока мощности 35-80 Вт/см2, разовая доза составляла от 3,0 до 5,5 Дж/см на поверхность трансплантата, материнского ложа и кожу наружного слухового прохода через 1% раствор имоксипина, находящийся в полости наружного слухового прохода. Действие гелий-неонового лазера осуществлялось при помощи дистального торца моноволоконного световода, соединенного с лазерной установкой. Время экспозиции лазерного излучения составляло 3-5 минут. Методика лазерофореза имоксипина проводилась курсом в течение 5-7 дней непосредственно в смотровой комнате.

Пример конкретного выполнения

Под наблюдением находилось 7 больных в возрасте от 20 до 52 лет с хроническими одно- и двусторонними мезотимпанитами, которым выполнялась ранее пластика перфорационного отверстия барабанной перепонки методом лазерной “биологической” сварки.

Пример. Больная Т., 52 года, находилась на амбулаторном лечении с диагнозом: Хронический правосторонний мезотимпанит, вне обострения. После проведенного обследования больной выполнена операция - Тимпанопластика твердой мозговой оболочкой плода человека слева с помощью лазерной “биологической” сварки (ЛБС) контактным способом. В раннем послеоперационном периоде для стимуляции процессов регенерации трансплантата и уменьшения воспалительных явлений со стороны материнского ложа применялась методика лазерофореза.

В полость правого наружного слухового прохода, заполненную 1% раствором имоксипина, вводился дистальный торец моноволоконного световода к поверхности трансплантата из твердой мозговой оболочки плода человека, закрывающего перфорационное отверстие в барабанной перепонке. Воздействие гелий-неоновым лазером при помощи лазерной физиотерапевтической установки “ЛА-2” с длиной волны 0,63 мкм, максимальной выходной мощностью 10-20 мВт, диаметр светового пятна колебался от 4 до 6 мм, плотность потока мощности 35-80 Вт/см2, разовая доза составляла от 3,0 до 5,5 Дж/см на поверхность трансплантата, материнского ложа и кожу наружного слухового прохода через 1% раствор имоксипина. Время экспозиции лазерного излучения составляло 5 минут. Методика лазерофореза имоксипина проводилась курсом в течение 7 дней непосредственно в смотровой комнате. Одновременно с проведением лазерофореза производилось исследование биохимических показателей крови для оценки эффективности лечения в сравнении с больными, которым выполнялось гелий-неоновое облучение полости наружного слухового прохода в комплексе с традиционной терапией (табл.1).

Данный способ лазерофореза способствует быстрому накоплению необходимой концентрации лекарственного препарата в крови больного, что способствует повышению эффективности лечения.

Прозрачный раствор имоксипина, введенный в полость наружного слухового прохода, способствует изменению оптической структуры окружающих его тканей, превращая ткань в более прозрачную, и тем самым повышает глубину проникновения лазерного излучения, являясь его проводником.

Антиоксидант способствует торможению процессов перекисного окисления липидов в тканях и повышает уровень антиоксидантной защиты, что немаловажно после имплантации трансплантата.

Таблица 1
Показатели в нмоль/л Традицион. терапия + ГНЛ Традицион. терапия + ГНЛ + антиоксидант
Гидроперекиси липидов5,44±0,68 4,71±0,55
Диеновые конъюгаты344,5±11,8 337,2±11,2
Малоновый диальдегид 1,52±0,31,35±0,2
Каталаза159,1±5,8 179,9±6,2

Источники информации

1. Плужников М.С., Лопотко А.И. Низкоэнергетическое лазерное излучение в ринологии //Российская ринология. - 1995. - № 3-4. - с.42-47.

2. Мишенькин Н.В., Тихомиров В.В., Кротов Ю.А. Действие энергии гелий-неонового лазера на ткани среднего уха в присутствии биологических жидкостей и медицинских растворов //Вестник оториноларингологии. - 1990. - № 5. - с.18-21.

Класс A61N5/067 с использованием лазерного луча

лазерное терапевтическое устройство -  патент 2528659 (20.09.2014)
волоконно-оптический инструмент с изогнутой дистальной рабочей частью -  патент 2528655 (20.09.2014)
способ лечения туберкулезного спастического микроцистиса -  патент 2527905 (10.09.2014)
устройство для воздействия инфракрасным излучением на коллагеновый слой кожи человека с визуализацией процесса -  патент 2527318 (27.08.2014)
способ лечения инфицированных ран и свищей у онкологических больных -  патент 2527175 (27.08.2014)
способ лечения пациентов с заболеваниями пульпы зуба и периодонта -  патент 2526961 (27.08.2014)
способ лечения деструктивных форм хронических верхушечных периодонтитов -  патент 2525702 (20.08.2014)
способ комплексной терапии впервые выявленного туберкулеза легких -  патент 2525580 (20.08.2014)
способ восстановления функций кишечной трубки при синдроме короткой кишки -  патент 2525530 (20.08.2014)
способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления -  патент 2525277 (10.08.2014)
Наверх