электролит для осаждения покрытия

Классы МПК:C25D3/56 сплавов
Автор(ы):, , , ,
Патентообладатель(и):Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова (RU)
Приоритеты:
подача заявки:
2003-09-19
публикация патента:

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-борных покрытий, применяемых для восстановления и упрочнения поверхности. Электролит содержит, кг/м3: хлористое железо (II) 350-400, борную кислоту 2,5-60, соляную кислоту 0,5-2. Технический результат: повышение микротвердости и износостойкости.

Формула изобретения

Электролит для осаждения покрытия, включающий соль железа, отличающийся тем, что он дополнительно содержит соляную и борную кислоты, в качестве соли железа - хлористое железо (II), при следующем соотношении компонентов, кг/м3:

Хлористое железо (II) 350-400

Борная кислота 2,5-60

Соляная кислота 0,5-2

Описание изобретения к патенту

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-борных покрытий, применяемых для восстановления и упрочнения поверхности.

Известен хлористый электролит железнения, содержащий 200-250 кг/м3 хлористого железа и 2-3 кг/м3 соляной кислоты. (Мелков М.П. Твердое осталивание автотракторных деталей. - М.: Транспорт, 1971, с.19-20.) Однако этот электролит работает при высокой температуре (60-80°С) и обеспечивает получение покрытий со значением микротвердости только 4500-6500 МПа.

За прототип взят электролит для осаждения покрытия, содержащий: хлорное железо (или сернокислое, трехвалентное) 80-120 кг/м 3, триэтаноламин 150-170 кг/м3, трилон Б 120-140 кг/м3, едкий натр 80-100 кг/м3, боргидрид натрия 0,5-1,0 кг/м3. (Левинзон А.М. Электролитическое осаждение металлов подгруппы железа. - Л.: Машиностроение, Ленингр. отд-ние, 1983. - 96 с., ил. - Б-чка гальванотехника / Под ред. П.М. Вячеславова. Вып.3.)

Недостатком данного электролита являются: низкая микротвердость и износостойкость, высокая температура процесса осаждения 70-80°С, низкая катодная плотность тока 8-10 А/дм2.

Для получения электролита, обладающего повышенной микротвердостью и износостойкостью, предлагается электролит, содержащий хлористое железо (II), борную и соляную кислоты при следующем соотношении компонентов, кг/м3:

Хлористое железо (II) 350-400

Борная кислота 2,5-60

Соляная кислота 0,5-2

Процесс осаждения ведется при температуре электролита 20-40°С и интервале катодных плотностей тока 15-60 А/дм2. Покрытие имеет следующий состав: железо 97-99,2%, бор 0,8-3%. Поверхность покрытия гладкая, блестящая.

Данный электролит получают соединением хлористого железа и борной кислоты. Количество борной кислоты находится в интервале 2,5-60 кг/м3. Ниже 0,2 кг/м3 применение борной кислоты нецелесообразно, т.к. получаемое покрытие по твердости близко к покрытию твердым железом. Выше 60 кг/м3 применение борной кислоты приводит к образованию окислов бора, что резко ухудшает качество покрытия, снижает твердость покрытия. Наиболее оптимальным является содержание борной кислоты 40 кг/м3 . Получаемое покрытие имеет микротвердость порядка 9100 МПа.

Концентрация хлористого железа (II) находится в пределах 350-400 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности. (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77-79.)

Для поддержания кислотности электролита (рН) добавляется соляная кислота в количестве 0,5-2,0 кг/м 3. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 кг/м3 происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытие и этим ухудшает его структуру. Наиболее оптимальным вариантом данного электролита является содержание соляной кислоты 1,5 кг/м3.

Электроосаждение происходит при температуре 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Выше 40°С не происходит значительных качественных изменений покрытия. Катодная плотность тока для данного электролита находится в пределах 15-60 А/дм 2. Ниже 15 А/дм2 плотность тока использовать нецелесообразно, т.к. целью получения электролита является повышение производительности электролита, а при низкой катодной плотности тока - малый выход по току. При катодной плотности тока больше 60 А/дм2 происходит интенсивное дендридообразование и резко снижается выход по току.

На основе проведенных испытаний оптимальным составом электролита является состав, приведенный в качестве примера:

Борную кислоту соединяют с хлористым железом 350 кг/м3 и соляной кислотой 1,5 кг/м 3. Хлористое железо и борную кислоту растворяют в дистиллированной воде. Анодом служит малоуглеродистая сталь. Электроосаждение происходит при температуре 20°С и катодной плотности тока 40 А/дм2 при скорости осаждения покрытия 0,3 мм/ч. Полученное покрытие имеет микротвердость 9100 МПа. Состав покрытия: железо - 98,5%, бор - 1,5%. Электролит для осаждения покрытия наносится на металлические поверхности.

Предлагаемый электролит позволяет получать покрытия, обладающие значительной микротвердостью и износостойкостью, и использовать его в народном хозяйстве для восстановления и ремонта деталей машин.

Класс C25D3/56 сплавов

щелочной электролит для электроосаждения цинк-никелевых покрытий -  патент 2511727 (10.04.2014)
состав электролита антифрикционного электролитического сплава "цинк-железо" для осаждения в условиях гидромеханического активирования -  патент 2489527 (10.08.2013)
способ электролитического осаждения сплава железо-алюминий -  патент 2486294 (27.06.2013)
система и способ нанесения покрытий из металлических сплавов посредством применения гальванической технологии -  патент 2473718 (27.01.2013)
электролит для осаждения сплава цинк-галлий -  патент 2459016 (20.08.2012)
способ нанесения электролитических покрытий на основе хрома -  патент 2457288 (27.07.2012)
электролит для осаждения сплава никель-висмут -  патент 2457287 (27.07.2012)
способ получения оксидного покрытия на стали -  патент 2449062 (27.04.2012)
способ получения покрытия из оксидов металлов на стали -  патент 2449061 (27.04.2012)
электролит для электроосаждения сплава цинк-никель -  патент 2441107 (27.01.2012)
Наверх