способ поиска кимберлитовых трубок

Классы МПК:G01V3/12 с использованием электромагнитных волн 
Автор(ы):, ,
Патентообладатель(и):Институт космофизических исследований и аэрономии Сибирского отделения РАН (RU)
Приоритеты:
подача заявки:
2002-09-09
публикация патента:

Изобретение относится к разведочной геофизике. Сущность: для поиска кимберлитовых трубок применяют радиолокационное зондирование импульсами магнитного поля. При этом в состав излучающего и приемного устройств включены горизонтальные магнитные диполи. Тем самым используют в дополнение к возможному различию кимберлитовых трубок от перекрывающих и вмещающих пород и неоднородностей строения самих трубок по электрическим свойствам отличие кимберлитовых трубок от перечисленных пород только по магнитной проницаемости. Выделяют предположительно кимберлитовые трубки по увеличению амплитуды и другим особенностям отраженного сигнала или их группы.

Формула изобретения

Способ поиска кимберлитовых трубок, отличающийся тем, что для поиска кимберлитовых трубок применяют радиолокационное зондирование импульсами магнитного поля с включением в состав излучающего и приемного устройств горизонтальных магнитных диполей, используют тем самым в дополнение к возможному различию кимберлитовых трубок от перекрывающих и вмещающих пород и неоднородностей строения самих трубок по электрическим свойствам отличие кимберлитовых трубок от перечисленных пород только по магнитной проницаемости и выделяют предположительно кимберлитовые трубки по увеличению амплитуды и другим особенностям отраженного сигнала или их группы.

Описание изобретения к патенту

Изобретение относится к разведочной геофизике, в частности, для поиска кимберлитовых трубок.

Известен способ поиска кимберлитовых трубок методом радиолокационного зондирования, включающий посылку последовательности импульсов электрического поля излучающей антенной в исследуемый массив горных пород, регистрацию с помощью приемной антенны отраженных сигналов от неоднородностей в нем и обнаружение кимберлитовых трубок по глубине расположения последней отражающей границы (над трубкой она значительно меньше) и/или меньшему, возможно и большему, числу отражающих границ над трубкой [1]. Прототип.

Недостатками известного способа являются ограниченная первыми десятками метров глубина исследования, в то время как в настоящее время наиболее актуальна задача поиска кимберлитовых трубок под перекрывающими породами мощностью ~100 и более метров, и то, что он не различает среды, отличающиеся только магнитной проницаемостью и вообще слабоконтрастные по комплексу электрических свойств.

Предлагаемый способ отличается тем, что для поиска кимберлитовых трубок применяют радиолокационное зондирование импульсами магнитного поля с включением в состав излучающего и приемного устройств горизонтальных магнитных диполей, используют тем самым в дополнение к возможному различию кимберлитовых трубок от перекрывающих и вмещающих пород и неоднородностей строения самих трубок по электрическим свойствам отличие кимберлитовых трубок от перечисленных пород только по магнитной проницаемости и выделяют предположительно кимберлитовые трубки по увеличению амплитуды и другим особенностям отраженного сигнала или их группы.

Введенный в формулу изобретения такой существенный признак, как то, что для радиолокации используются импульсы магнитного поля, благодаря современным техническим возможностям создания и регистрации импульсов магнитного поля, позволяет кратно увеличить энергетический потенциал соответствующего радиолокатора по сравнению с радиолокаторами, работающими на основе изучения распространения импульсов электрического поля, и отсюда значительно усиливает возможность различать слабоконтрастные по всему комплексу электромагнитных свойств среды и более чем на порядок, при прочих равных условиях, увеличивает глубину исследования.

Введенный в формулу изобретения такой существенный признак, как то, что в излучающем и приемном устройствах используются горизонтальные магнитные диполи, позволяет использовать изменение на субгоризонтальной границе раздела двух сред горизонтальной составляющей магнитной индукции для создания отраженного сигнала и, таким образом, самой возможности обнаружения этой границы раздела.

Способ осуществляют следующим образом.

Излучающее устройство содержит горизонтальный магнитный диполь, представляющий в общем случае расположенную в вертикальной плоскости многовитковую петлю с пульсирующим в заданном режиме (импульсным) электрическим током, которую располагают на дневной поверхности или углубляют в изучаемую толщу, предположительно содержащую кимберлитовые трубки, заполненные рыхлыми отложениями, например бокситами, карстовые полости и т.д. Применение генераторов магнитного момента с использованием сверхпроводников позволяет увеличить мощность излучающих устройств по крайней мере до уровня мощности МГД-генераторов (1016Вт), уменьшив одновременно их вес и габариты. Использование горизонтальных магнитных диполей в излучающем и приемном устройствах позволяет и при отсутствии иных различий создать и зарегистрировать отраженный сигнал от субгоризонтальных границ раздела в исследуемом массиве горных пород благодаря скачку на них горизонтальной составляющей магнитной индукции. Излучающее устройство создает импульсы магнитного поля требуемой для решения конкретной задачи длительности предпочтительно полусинусоидальной формы для более экономичной и бездуговой работы генератора, которая осуществляется в заданном режиме автоматически или под управлением компьютера. Приемное устройство также содержит горизонтальный магнитный диполь с высокочувствительным (10 -40Вт по мощности) магнитометром на основе эффекта Джозефсона в качестве датчика с записью сигнала в цифровой форме для дальнейшей компьютерной обработки. Отсюда энергетический потенциал такой радиолокационной станции достигает ~560 дБ без учета возможного накопления сигнала против ~150 дБ у радиолокаторов импульсами электрического поля, что позволяет обнаружение и прослеживание положения границ раздела с изменением на них только магнитной проницаемости и границ слабоконтрастных сред по всему комплексу электрических свойств и увеличивает глубину исследования при прочих равных условиях более чем на порядок в сравнении с радиолокацией импульсами электрического поля.

Преимущества предлагаемого способа:

- возможность определять положение границ раздела, на которых меняется только магнитная проницаемость;

- возможность определять положение границ раздела слабоконтрастных сред на большей, чем при радиолокации импульсами электрического поля, глубине;

- большая чем на порядок глубина исследования в сравнении с радиолокацией импульсами электрического поля.

Источники информации, принятые во внимание при составлении описания изобретения:

1. B.C.Якупов. К вопросу об инженерном обеспечении комплексного освоения территории Якутской алмазоносной провинции // Прогнозирование, поиски, разведка и эксплуатация месторождений алмазов и других полезных ископаемых. Мирный, 1998, с. 391-392.

2. B.C.Якупов, С.В.Якупов. Зондирование земных сред импульсами магнитного поля // Доклады Академии наук, 2002, том 384, №6, с. 815-817.

Класс G01V3/12 с использованием электромагнитных волн 

способ геоэлектроразведки в условиях техногенной инфраструктуры -  патент 2528115 (10.09.2014)
устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ -  патент 2526588 (27.08.2014)
способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления -  патент 2515191 (10.05.2014)
способ радиолокации объектов в слабопроводящих средах -  патент 2513671 (20.04.2014)
устройство и способ для детектирования электромагнитного излучения -  патент 2507544 (20.02.2014)
способ радиолокационного зондирования подстилающей поверхности и устройство для его осуществления -  патент 2490672 (20.08.2013)
способ георадиолокации многолетнемерзлых пород -  патент 2490671 (20.08.2013)
способ прогноза землетрясений -  патент 2488846 (27.07.2013)
способ получения радиоголограмм подповерхностных объектов -  патент 2482518 (20.05.2013)
способ геоэлектроразведки и устройство для его осуществления -  патент 2480794 (27.04.2013)
Наверх