композиция в качестве катализатора деиодирования для получения гексафтор-1,2,3,4-тетрахлорбутана и способ получения гексафтор-1,2,3,4-тетрахлорбутана
Классы МПК: | B01J23/06 цинка, кадмия или ртути B01J31/02 содержащие органические соединения или гидриды металлов B01J31/04 содержащие карбоновые кислоты или их соли C07C17/23 дегалоидированием |
Автор(ы): | Каримова Н.М. (RU), Глазков А.А. (RU) |
Патентообладатель(и): | Институт элементоорганических соединений им. А.Н. Несмеянова РАН (RU) |
Приоритеты: |
подача заявки:
2003-06-25 публикация патента:
27.03.2005 |
Изобретение относится к органической химии, а точнее к получению катализатора деиодирования и способу получения гексафтор-1,2,3,4-тетрахлорбутана. Описана каталитическая композиция для деиодирования, которая содержит этиловый эфир уксусной кислоты и металлический цинк в виде гранул размером 3-6 мм при следующем соотношении компонентов (массовые части): цинк гранулированный - 8-50; этиловый эфир уксусной кислоты - 0.95-1. Описан способ получения гексафтор-1,2,3,4-тетрахлорбутана (1), включающий использование вышеуказанного катализатора, заключается в том, что процесс проводят при Т=20-25°С в течение 20-40 часов с последующей промывкой полученного целевого продукта водой при комнатной температуре. Технический результат: предлагаемый катализатор отличается доступностью, дешевизной, отсутствием токсичности, удобством применения. Предлагаемый способ с использованием вышеупомянутого катализатора получения гексафтор-1,2,3,4-тетрахлорбутана (1) отличается стабильно высоким выходом целевого продукта (90-98%), что влечет за собой простоту его выделения - обычной промывкой реакционной массы водой при комнатной температуре, а также простотой аппаратурного оформления. Это обуславливает высокую технологичность предлагаемого способа, что позволяет успешно применять его в промышленном масштабе. 2 с.п. ф-лы, 1 табл.
Формула изобретения
1. Катализатор для получения гексафтор-1,2,3,4-тетрахлорбутана деиодированием трифтор-1,2-дихлориодэтана, состоящий из гранулированного цинка и этилового эфира уксусной кислоты, отличающийся тем, что компоненты катализатора взяты в следующем соотношении, мас.ч.:
Гранулированный цинк с размером гранул 3-6 мм 8-50
Этиловый эфир уксусной кислоты 0,95-1,
а соотношение этилового эфира уксусной кислоты и трифтор-1,2-дихлориодэтана составляет 0,95-1:65-400 мас.ч.
2. Способ получения гексафтор-1,2,3,4-тетрахлорбутана путем деиодирования трифтор-1,2-дихлориодэтана в присутствии катализатора, отличающийся тем, что в качестве катализатора используют катализатор по п.1 и процесс проводят при Т=20-25°С в течение 20-40 ч с последующей промывкой полученного целевого продукта водой при комнатной температуре.
Описание изобретения к патенту
Изобретение относится к органической химии, а точнее к получению катализатора деиодирования и способу получения гексафтор-1,2,3,4-тетрахлорбутана.
Наиболее эффективно предлагаемая каталитическая композиция может быть использована для получения полихлорперфторуглеводородов, в частности, для получения гексафтор-1,2,3,4-тетрахлорбутана формулы (1).
CF2Cl-CFCl-CFCl-CF2Cl (1)
Последний является хладоном широкого назначения и используется, в частности, в качестве исходного соединения при получении промышленного мономера - перфторбутадиена. (M.Prober, W-m T.Miller, J.Am.Chem.Soc., 1949, 71, 598-602), а также в качестве добавки к ракетному топливу (L.Spenadel, H.Bieber, US 3388015; 1968).
Известна каталитическая система, содержащая цинковую пыль и диоксан (соотношение массовых частей 1:1), которая используется для синтеза соединения (1) из трифтор-1,2-дихлориодэтана формулы (II) при 30-100°С.
CF2Cl-CFClJ (II)
Недостатком данной каталитической системы является ее чрезмерная активность, в результате чего происходит внутримолекулярное отщепление JCl и образуется большое количество (до 40%) побочного продукта - трифторхлорэтилена. Гексафтор-1,2,3,4-тетрахлорбутан (1) не удается выделить с заметным выходом, так как, образуясь, он сразу же дехлорируется в перфторбутадиен (R.N.Haszeldine, J.Chem.Soc., 1952, 4423-4431).
Известно получение гексафтор-1,2,3,4-тетрахлорбутана (1) деиодированием трифтор-1,2-дихлориодэтана (II) встряхиванием его с металлической ртутью в кварцевой трубке при УФ-облучении.
Этот способ не является технологичным из-за высокой токсичности ртути, (R.N.Haszeldine, J.Chem.Soc., 1952, 4423-4431).
Известно использование при получении соединения (1) каталитической системы, состоящей из гранулированного цинка, уксусного ангидрида и металенхлорида (соотношение массовых частей 3,3:8:10). При ее использовании гексафтор-1,2,3,4-тетрахлорбутан (1) образуется с выходом 51%.
Недостатком способа получения соединения (1) при использовании данной каталитической системы является сложность обработки реакционной массы с целью удаления уксусного ангидрида, металенхлорида и избытка цинка, что снижает технологичность процесса. (A.L.Henne, W.Postelheck, J.Am.Chem.Soc., 1955, 77, 2334).
Известен способ получения гексафтор-1,2,3,4-тетрахлорбутана (1) из трифтор-1,2-дихлориодэтана (II) с использованием каталитической системы, состоящей из гранулированного цинка, этилацетата и метиленхлорида (соотношение массовых частей 4,5:20:27) при 45-50°С, который выбран в качестве прототипа как наиболее близкий по технической сущности.
Основным недостатком при использовании данной каталитической системы является образование наряду с (1) нескольких побочных продуктов, что затрудняет выделение целевого соединения (1). Его выход достигает лишь 20%. (T.M.Keller, P.Tarrant, J.Fluorine Chem., 1975, 6, 105-113).
Задача настоящего изобретения состоит в создании эффективного катализатора деиодирования, который позволит получить гексафтор-1,2,3,4-тетрахлорбутан (1) более технологичным путем с высоким выходом и высокой степенью чистоты целевого продукта.
Поставленная задача решается тем, что каталитическая композиция для деиодирования трифтор-1,2-дихлориодэтана (II) содержит этиловый эфир уксусной кислоты и металлический цинк в виде гранул размером 3-6 мм при следующем соотношении компонентов (массовые части):
Цинк гранулированный с размером гранул 3-6 мм – 8-50;
Этиловый эфир уксусной кислоты - 0,95-1,
а соотношение этилового эфира уксусной кислоты и трифтор-1,2-дихлориодэтана (II) составляет 0,95-1:65-400 (масс. частей).
Способ получения гексафтор-1,2,3,4-тетрахлорбутана (1) деиодированием трифтор-1,2-дихлориодэтана (II), включающий использование вышеуказанного катализатора, заключается в том, что процесс проводят при Т=20-25°С в течение 20-40 часов с последующей промывкой полученного целевого продукта водой при комнатной температуре.
Существенное отличие предлагаемого изобретения от известного решения заключается в том, что в прототипе реагенты: этилацетат и метиленхлорид - берутся в большом по отношению к цинку количестве, что приводит к значительному разбавлению реакционной массы, и реакцию проводят при повышенной температуре (40-45°С). Все это приводит к образованию побочных продуктов, что затрудняет выделение и существенно снижает выход целевого вещества (1).
В заявляемом решении используется каталитическая композиция, состоящая из цинка и минимального количества этилового эфира уксусной кислоты (минимальное соотношение массовых частей = 50:0,95, соответственно). Получение гексафтор-1,2,3,4-тетрахлорбутана (1) формулы CF2Cl-CFCl-CFCl-CF2Cl осуществляют путем деиодирования трифтор-1,2-дихлориодэтана (II) формулы CF 2Cl-CFClJ с помощью этой каталитической композиции, что позволяет получать целевой продукт (1) с высоким выходом и высокой степени чистоты.
Каталитическая композиция для деиодирования содержит этиловый эфир уксусной кислоты (ГОСТ 22300-76 изм. 1-3) и металлический цинк в виде гранул размером 3-6 мм (ТУ 6-09-5294-86).
Способ получения гексафтор-1,2,3,4-тетрахлорбутана (1) заключается в следующем. К реакционной смеси, содержащей трифтор-1,2-дихлориодэтан (II) и этиловый эфир уксусной кислоты, прибавляют гранулированный цинк небольшими порциями в течение 1 часа при энергичном перемешивании при 20-25°С. Реакционную массу перемешивают при 20°С в течение 20-40 часов, ход реакции контролируют методом газожидкостной хроматографии. После полной конверсии трифтор-1,2-дихлориодэтана (II) реакционную массу разбавляют водой, органический слой отделяют и сушат сульфатом магния. Получают целевой продукт с выходом 90-98%, который по данным хромато-масс-спектроскопии представляет собой гексафтор-1,2,3,4-тетрахлорбутан (1) с чистотой не менее 97%.
Схема синтеза гексафтор-1,2,3,4-тетрахлорбутана (1)
Пример 1.
В трехгорлую круглодонную колбу объемом 250 мл, снабженную мешалкой и термометром, помещают смесь 55.8 г (20 ммолей) трифтор-1,2-дихлориодэтана (II) и 0.41 г (0.45 мл, 4.6 ммолей) этилового эфира уксусной кислоты. Температуру реакционной смеси поддерживают 20-22°С с помощью водяной бани. При энергичном перемешивании к реакционной смеси прибавляют 6.54 г (10 ммолей) гранулированного цинка с размером гранул 3-6 мм в течение 1 часа. Смесь перемешивают 20 часов при 20°С, затем добавляют 50 мл воды, органический слой отделяют, промывают водой (2×10 мл) и сушат сульфатом магния. Получают 29.8 г (98%) гексафтор-1,2,3,4-тетрахлорбутана (1) с чистотой не менее 97% по данным хромато-масс-спектроскопии, т.кип. 133-134°С, n20д 1.3855; (лит.: т.кип. 133-135°С, n23д 1.382 (R.N.Haszeldine, J.Chem.Soc., 1952, 4423)).
Примеры 2-4.
В аналогичных условиях при соотношении цинка и этилового эфира уксусной кислоты, равном 8-50:0,95-1 (масс. частей) соответственно, выход целевого продукта (1) составляет 90-98%.
Изменение соотношений компонентов каталитической системы, размера гранул цинка и условий синтеза приводит к нижеследующим негативным последствиям.
Примеры 5* и 6*.
В аналогичных условиях, но при снижении или увеличении относительного содержания этилового эфира уксусной кислоты и цинка (1:1 и 1:73, соответственно) увеличивается время реакции (40-50 часов) и снижается выход целевого продукта (1) до 70-75%.
Пример 7*.
В аналогичных условиях, но при размере гранул цинка больше 6 мм для полной конверсии иодида (II) требуется не менее 60 часов. Выход (1) 80%.
Пример 8*.
В аналогичных условиях, но при размере гранул цинка 1 мм и меньше происходит спонтанная побочная реакция внутримолекулярного деиодхлорирования с образованием трифторхлорэтидена. Выход (1) не превышает 40%.
Пример 9*.
В аналогичных условиях, но при температуре выше 25°С также происходит внутримолекулярное деиодхлорирование, при этом резко снижается выход целевого продукта (от 20 до 0%).
Таблица 1 | ||||||||
Пример | Размер гранул цинка, мм | Содержание цинка, мас. части | Содержание этилацетата, мас.части | Соотношение Иодид II /этилацетат мас.части | T°С | Время реакции час. | Выход (1) % | При- меч. |
1 | 3-6 | 16 | 1 | 130:1 | 20 | 20 | 98 | |
2 | -“- | 8 | 0.95 | 65: 0.95 | 20 | 30 | 92 | |
3 | -“- | 36 | 0.95 | 300:0.95 | 20 | 30 | 94 | |
4 | -“- | 50 | 1 | 400:1 | 20 | 40 | 90 | |
5* | -“- | 1 | 1 | 8.3:1 | 20 | 40 | 70 | |
6* | -“- | 73 | 1 | 620:1 | 20 | 50 | 75 | |
7* | 7 | 16 | 1 | 130:1 | 20 | 60 | 80 | |
8* | 1 | 16 | 1 | 130:1 | 20 | 10 | Не более 40 | ** |
9* | 3-6 | 16 | 1 | 130:1 | 50 | 5 | Не более 20 | ** |
Аналог | 3-6 | 1 | 2.4 | 1.75:1 | 20-25 | 3 | 51 | *** |
Про- тотип | 3-6 | 1 | 4 | 1:1 | 45-50 | 0.25 | Не более 20 | ** |
*Негативные примеры. **Происходит спонтанное внутримолекулярное деиодхлорирование. ***Вместо этилового эфира уксусной кислоты используют уксусный ангидрид. |
Таким образом, по ряду важных технологических показателей предлагаемое изобретение заметно превосходит прототип.
Предлагаемый способ получения гексафтор-1,2,3,4-тетрахлорбутана (1), использующий эффективную каталитическую систему деиодирования (гранулированный цинк + этиловый эфир уксусной кислоты), позволяет получать целевой продукт (1) с высоким выходом (90-98%), высокой степенью чистоты (не менее 97%), что позволяет обеспечить его дальнейшее применение без специальной очистки.
В прототипе целевой продукт (1) получается с выходом не более 20% и содержит примеси, и это затрудняет его выделение в чистом виде.
Предлагаемый катализатор отличается доступностью, дешевизной, отсутствием токсичности, удобством применения.
Предлагаемый способ с использованием вышеупомянутого катализатора получения гексафтор-1,2,3,4-тетрахлорбутана (1) прежде всего отличается стабильно высоким выходом целевого продукта (90-98%), что влечет за собой простоту его выделения - обычной промывкой реакционной массы водой при комнатной температуре, а также простотой аппаратурного оформления. Это обуславливает высокую технологичность предлагаемого способа, что позволяет успешно применять его в промышленном масштабе.
Класс B01J23/06 цинка, кадмия или ртути
Класс B01J31/02 содержащие органические соединения или гидриды металлов
Класс B01J31/04 содержащие карбоновые кислоты или их соли
Класс C07C17/23 дегалоидированием