состав фибробетона

Классы МПК:C04B28/02 содержащие гидравлические цементы, кроме сульфата кальция
C04B20/00 Использование материалов в качестве наполнителей для строительных растворов, бетона или искусственных камней, относящихся к более чем одной из групп  14/00
Автор(ы):, , , ,
Патентообладатель(и):Ивановская государственная архитектурно-строительная академия (RU),
Ивановский государственный химико-технологический университет (RU)
Приоритеты:
подача заявки:
2003-07-10
публикация патента:

Изобретение относится к промышленности строительных материалов. Состав фибробетона содержит цементное вяжущее, наполнитель, армирующий волокнистый компонент и воду. Армирующий неметаллический волокнистый компонент предварительно обработан в низкотемпературной плазме тлеющего разряда переменного тока при давлении 50-250 Па, силе тока 1,0-2,2 мА/см2 в течение 20-60 сек. Технический результат: повышение прочности при изгибе, при сжатии и показателей сопротивления удару.1 табл.

Формула изобретения

Состав фибробетона, содержащий цементное вяжущее, наполнитель, армирующий неметаллический волокнистый компонент и воду, отличающийся тем, что он содержит армирующий неметаллический волокнистый компонент, предварительно обработанный в низкотемпературной плазме тлеющего разряда переменного тока при давлении 50-250 Па, силе тока 1,0-2,2 мА/см2 в течение 20-60 с.

Описание изобретения к патенту

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении составов фибробетонов, армированных неметаллическим волокном.

Уровень техники

Известен состав фибробетона [Рабинович Ф.Н. Дисперсно-армированные бетоны. - М.: Стройиздат, 1989, стр. 130-131], который содержит воду, наполнитель, в качестве вяжущего вещества - цемент, в качестве армирующего материала - стекловолокно.

Недостатками такого материала являются:

- низкая прочность на изгиб;

- низкая прочность при сжатии;

- низкие показатели сопротивления удару.

Наиболее близким по составу к изобретению является состав фибробетона [Технология и долговечность дисперсно-армированных бетонов. Сборник научных трудов. - Л., 1984, стр. 67-68], который содержит воду, в качестве вяжущего вещества - цемент, в качестве материала наполнителя - песок с Мкр=2 и максимальной крупностью зерен не более 5 мм, в качестве армирующего материала - стекловолокно, вводимое в строительное тесто в количестве 1-2% по массе материала, при соотношении цемента и наполнителя (Ц:П) 1:1 и соотношении воды и цемента (В/Ц) 0,4.

Однако такой материал имеет недостатки:

- невысокая прочность при изгибе - 9 МПа;

- невысокая прочность при сжатии - 60 МПа;

- невысокие показатели сопротивления удару - 2,6 кгм/см2.

Сущность изобретения

Задача изобретения состояла в поиске состава фибробетона, содержащего цементное вяжущее, наполнитель, армирующий неметаллический волокнистый компонент и воду, который позволил бы увеличить прочность материала на изгиб, прочность материала на сжатие и повысить показатели сопротивления удару.

Поставленная задача достигается тем, что состав фибробетона, содержащий цементное вяжущее, наполнитель, армирующий неметаллический волокнистый компонент и воду, содержит армирующий неметаллический волокнистый компонент, предварительно обработанный в низкотемпературной плазме тлеющего разряда переменного тока при давлении 50-250 Па, силе тока 1,0-2,2 мА/см2 в течение 20-60 сек.

Изобретение позволяет получить следующие преимущества:

- повысить прочность материала при изгибе на величину от 25 до 60%;

- повысить прочность материала при сжатии на величину от 40 до 90%;

- сопротивление материала удару на величину от 10 до 30%.

Сведения, подтверждающие возможность воспроизведения изобретения

Для приготовления предлагаемого состава фибробетона используют:

- в качестве вяжущего - цемент, например М500;

- в качестве материала наполнителя - традиционно применяемые для изготовления бетонных смесей, например: керамзитовый песок, кварцевый песок и др.;

- в качестве неметаллического волокнистого армирующего материала могут быть использованы различные волокна органического и неорганического происхождения, например, стекловолокно, полиамид, хлопок (отходы производства), лен (отходы производства), полиэтилентерефталат, асбест. Необходимым условием является предварительная обработка этих волокон в плазме тлеющего разряда переменного тока при давлении 50-250 Па, силе тока 1,0-2,2 мА/см2 в течение 20-60 сек. Армирующий волокнистый компонент используют в количестве 1-4% по массе.

Состав готовят традиционным образом. Готовят цементное тесто из взятых в необходимом соотношении цемента и воды (В/Ц=0,34-0,4), которые тщательно перемешивают до получения однородной массы. В полученную массу вносят необходимое количество наполнителя (Ц:П= 1:1-1:0,7) и опять перемешивают до однородной массы. В полученную массу вводят необходимое количество волокнистого армирующего компонента, прошедшего предварительную обработку в плазме тлеющего разряда, и перемешивают до получения однородной массы. Из полученного состава фибробетона формуют образец стандартной формы 40×40×160 мм. После твердения и выдержки образцов в течение 28 суток проводят испытание образцов. Прочность материала на сжатие определяют по ГОСТ 310-4-76, прочность на изгиб - по методике ГОСТ 10180-78. Сопротивление материала удару определялось и для прототипа, и для изобретения одинаково, а именно по известной методике на вертикальном копре [Технология и долговечность дисперсно-армированных бетонов, Сборник научных трудов, Л., 1984, стр. 94].

Качественные показатели состава с использованием в качестве армирующего материала неметаллических волокон различной химической природы и физической структуры, обработанных в низкотемпературной плазме тлеющего разряда при различных параметрах, представлены в табл. 1.

Таблица 1.

Качественные показатели состава фибробетона с использованием в качестве армирующего материала неметаллических волокон обработанных в низкотемпературной плазме тлеющего разряда
№ п.пВяж.НаполнительЦ:П В/ЦАрм. Мат./%Параметры обработки Технические результаты
Время, t,сек. Сила тока,I мА/см2Давление Р,ПаПроч. на изгиб, МПаПроч. на сжатие, МПаСопротивление удару (работа разрушения, кг·м/см2)
1Цемент М500Кварц, песок1:1 0,37Полиэфир/3201.5100 11,5853,22
2Цемент М500Кварц, песок1:0,70,4Полиэфир/2 201,52001395 2,97
4Цемент М500Кварц, песок 1:10,34Стекловолокно/230 115014752,93
5Цемент М500Кварц, песок1:1 0,37Стекловолокно/1402 10014,51003,15
6 Цемент М500Керамзит, песок1:0,70,4 Стекловолокно/2501,5100 141103,31
7Цемент М500Кварц, песок1:10,37Стекловолокно/2 601,55013105 3,27
10Цемент М500Кварц, песок 1:10,34Лен/3201,5 10014952,99
11 Цемент М500Кварц, песок1:0,7 0,4Лен/230210014,5 1153,13
13Цемент М500 Кварц, песок1:10,4Асбест/3 401150141003,37
14Цемент М500Керамзит, песок 1:0,80,37Асбест/4602,2 25014,51053,39
ПрототипЦемент М500Кварц, песок1:1 0,4Стекловолокно/2-- -9602,6

Класс C04B28/02 содержащие гидравлические цементы, кроме сульфата кальция

композиция радиационно-защитного бетона -  патент 2529031 (27.09.2014)
композиционный строительный материал -  патент 2527447 (27.08.2014)
цементный строительный раствор и способ усовершенствованного упрочнения строительных конструкций -  патент 2526946 (27.08.2014)
содержащая пластифицирующую добавку композиция добавки-ускорителя твердения -  патент 2520105 (20.06.2014)
смеси, содержащие кремнийорганические соединения, и их применение -  патент 2516298 (20.05.2014)
динамические сополимеры для сохранения удобоукладываемости цементных композиций -  патент 2515964 (20.05.2014)
бетонная смесь -  патент 2514060 (27.04.2014)
гидравлическое вяжущее на основе сульфоглиноземистого клинкера и портландцементного клинкера -  патент 2513572 (20.04.2014)
добавки к цементу -  патент 2509739 (20.03.2014)
цементно-полимерная смесь для антикоррозионной и абразивной защиты внутренних поверхностей стальных трубопроводов систем тепловодоснабжения -  патент 2506489 (10.02.2014)

Класс C04B20/00 Использование материалов в качестве наполнителей для строительных растворов, бетона или искусственных камней, относящихся к более чем одной из групп  14/00

Наверх