способ получения ароматических полиамидов

Классы МПК:C08G69/32 из ароматических диаминов и ароматических дикарбоновых кислот с ароматически связанными аминогруппами и карбоксильными группами
Автор(ы):, , , , ,
Патентообладатель(и):Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) (RU),
Иркутский государственный университет (ИГУ) (RU)
Приоритеты:
подача заявки:
2003-04-30
публикация патента:

Изобретение относится к способу получения ароматических полиамидов, которые могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, клеев и пленок. Способ получения включает две стадии. На первой стадии получают полиимидаты неравновесной поликонденсацией бис-фенолов с N-фенилиминхлоридом на основе моно- и дикарбоновых кислот. Затем полученные полиимидаты подвергают перегруппировке Чепмена при 240-260°С в течение 5-6 час. Изобретение позволяет создать полимеры с хорошей растворимостью и повышенной термостойкость. 2 табл.

Формула изобретения

Способ получения ароматических полиамидов, включающий неравновесную поликонденсацию бис-фенолов с N-фенилиминхлоридом на основе моно- и дикарбоновых кислот до получения полиимидатов и последующую их перегруппировку Чепмена при температуре 240-260 °С в течение 5-6 ч.

Описание изобретения к патенту

Изобретение относится к химии высокомолекулярных соединений, в частности, к способу получения термостойких полигетероариленов, которые могут быть использованы в промышленности полимерных изделий, в частности связующих для пластмасс и стеклопластиков, а также клеев, покрытий и пленочных материалов.

Известны (Пат. США №3418275, опубл. 1968 г., Пат. США №3624033, опубл. 1971 г., Федотова О.Я. и др. Высокомол. соед. - 1960. - Т.2. - с.899-903., Hesegawa H. Bull. Chem. Soc. Japan. - 1954. - V.27. - p.227-235.) классические способы получения ароматических полиамидов (АПА) низкотемпературной поликонденсацией диаминов с дикарбоновыми кислотами или их производными и гомополиконденсацией ароматических аминокислот или их производных в растворе, в расплаве и на границе раздела фаз. Данные методы приводят к получению полимеров с ограниченной растворимостью, недостаточной термостойкостью и небольшим интервалом между температурами размягчения и разложения и, как следствие, приводят к плохой перерабатывающейся способности полимеров данного типа.

Выделить наиболее близкий аналог предлагаемому изобретению невозможно, т.к. существующие методы и некоторые из них приведенные заключаются в реакциях поликонденсации или полимеризации мономера или мономеров, а предлагаемый метод заключается в перегруппировке предварительно полученного полиимидатного звена.

Техническим результатом изобретения является повышение термостойкости, улучшение физико-механических характеристик и обеспечение возможности переработки ПА в изделия современными промышленными методами.

Для достижения технического результата предложено получение N-фенилзамещеных ароматических ПА по реакции внутримолекулярной термической перегруппировки полиимидатов (полиимидоэфиров) перегруппировкой Чепмена [Вацуро К.В, Мищенко Г.Л. // Именные реакции в органической химии. М.: Химия, 1976, 471 с.; Chapman A.W. // J.Chem. Soc. 1925. V.127. P.1992]. Полиимидаты получают неравновесной поликонденсацией бис-фенолов с небольшим избытком N-фенилиминохлорида на основе моно- и дикарбоновых кислот (мольное соотношение бис-фенола к N-фенилиминохлориду 1,000:1,080-1,120) следующего строения:

способ получения ароматических полиамидов, патент № 2245345

Реакции осуществляют по следующей схеме:

способ получения ароматических полиамидов, патент № 2245345

Коэффициенты m и n - количество молей мономеров, вступивших в реакцию поликонденсации. Соотношение m/(n-m) и коэффициент р - степень полимеризации, лежащая в области 43-50 и 38-46, соответственно.

Реакцию неравновесной поликонденсации в растворе N-метил-2-пирролидона (N-МП) бис-фенола с N-фенилиминохлоридом проводят следующим образом.

В раствор (N-МП) бис-фенола и триэтиламина при перемешивании и 20°С небольшими порциями в течении 15-20 мин. вводят раствор (N-МП) N-фенилиминохлорида. После гомогенизации реакционную смесь помещают в металлическую баню с одновременным продуванием аргона. Поликонденсацию ведут в течение 15-16 часов при 150-160°С, в зависимости от строения исходных мономеров с образованием полиимидатов, выход 94-97%.

Перегруппировку осуществляли при 240-260°С в течение 5-6 часов, при этом происходило незначительное уменьшение молекулярной массы образующегося полиамида. Полимеры полностью растворимы в концентрированных серной и муравьиной кислотах, амидных растворителях. Условия проведения реакций и свойства полученных ароматических ПА приведены в таблице 1.

Строение полученных ароматических ПА подтверждено данными ИК-спектроскопии, ЯМР С13- и Н1-спектроскопии. Так, по данным ИК-спектроскопии характеристические полосы поглощения с области 1665-1635 см-1 (C=N) смещаются в область 1690-1660 см-1 (С=О), а полосы в области 1280-1260 см-1 имидоэфирной (С-О) связи практически отсутствуют.

Согласно данным динамического термогравиметрического анализа (5 град/мин, на воздухе), полиамиды теряют 10% начального веса при 410-460°С (см. Таблицу 1).

Прессованием порошков ароматических полиамидов при давлении 70-75 МПа и 250-350°С получены пресс-материалы, свойства которых приведены в Таблице 2.

Предлагаемый способ подтверждается следующими нижеприведенными примерами. Все примеры приведены с небольшим избытком N-фенилиминохлорида.

Пример 1. К раствору (N-МП) бис-фенола (0,01 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина (0.022 моль) в течение 15-20 мин. приливали раствор (N-МП) N-фенилиминохлорида на основе дикарбоновых кислот (0,011 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона со скоростью 10-30 мл/мин. Синтез вели в течение 15-16 часов при 150-160°С. Продукт высаживали в 2%-ный водный раствор аммиака, отделяли на фильтре, промывали последовательно 1%-ным раствором бисульфита натрия и водой. Сушили в вакуум-шкафу при 60-70°С до постоянной массы.

Перегруппировку полиимидатов в ПА осуществляли в конденсационной пробирке при 240-260°С в течение 5-6 часов при продувании аргона со скоростью 10-30 мл/мин. Выход ПА количественный.

Пример 2. К раствору (N-МП) резорцина 1,1000 г (0,0100 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина 2,2220 г (0,0220 моль) в течение 15-20 мин. приливали раствор (N-МП) N,N’-дифенилизофталиминохлорида 3,8830 г (0,0110 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона со скоростью 10-30 мл/мин. Синтез вели в течение 15-16 час при 150-160°С. Продукт высаживали в 2%-ный водный раствор аммиака, отделяли на фильтре, промывали последовательно 1%-ным раствором бисульфита натрия и водой. Сушили в вакуум шкафу при 60-70°С до постоянной массы.

Перегруппировку полиимидатов в ПА проводили аналогично примеру 1.

Пример 3. Неравновесную полигетероконденсацию между бис-фенолами и N-фенилиминохлоридами на основе монокарбоновых кислот, а именно поликонденсацию 1,1000 г (0,0100 моль) гидрохинона и 4,8060 г (0,0108 моль), 4,4’-окса-бис-(N-фениленбензиминохлорида) в присутствии триэтиламина 2,1816 г (0,0216 моль) и последующую перегруппировку в ПА проводили аналогично примеру 1.

Загрузка полиимидатов для перегруппировки в ПА во всех примерах составляла 0,005 моль, степень перегруппировки - 74,5-88,7%.

Таблица 2

Физико-механические свойства пресс-материалов на основе полученных ПА.
п./н.ПАУдельная ударная вязкость, кгс см/см 2 ГОСТ 4647-80Разрушающее напряжение при растяжении, МПа ГОСТ 4648-71
R’ или R’’ R
1.1a2a 7,5-8,5600
2.1a 2c6,5-7,5580
3.1b2a6,5-7,0590
4.1b2b6,0-6,5 570
5.1.1a2a 8,0-8,5600
6.1.1a 2c7,0-7,5590
7.1.1b2b7,0-7,5620
8.1.1b2c7,0-7,5 630

Как видно из приведенных данных Таблиц 1, 2, предлагаемый способ получения ароматических ПА выгодно отличается тем, что получаются полимеры с высокими значениями вязкостных свойств, сравнительно хорошей растворимостью и хорошей перерабатываемостью в полимерные материалы современными методами, а также высокими значениями физико-механических свойств их материалов и высокой стойкостью к термоокислительной деструкции.

Таблица 1

Условия получения и свойства ароматических ПА
п./н.ПА Брутто-формула эл/звенаМ.М. эл/звена г/моль способ получения ароматических полиамидов, патент № 2245345 прив. (ДМФА) дл/г1Условия получения Т начала разложения, °С2Т начала размягчения, °C3
R’ или R’’R Т,°СПродол-сть, час
1. C26H18O2 N23900,67240 5430320
2. 2b0,682405420 315
3.C32 H22O4N2S530 0,702605450280
4.1bC26H 18O2N23900,65 2506420300
5.2b0,712506 410295
6. C32H22O4N2S 5300,682605430310
7.1.1aC 33H24O2N2 4800,602506440300
8.2b0,64250 6430290
9. C39H28O4 N2S6200,662605 455290
10. 1.1bС32Н22O3 N24820,642506 440270
11.2b 0,692506430280
12.С38H26 О5N2S6320,67 2605460270
Примечания: 1 - измерения проведены при 20°С, с=0,5 г/дл. 2 - температура, соответствующая 10% потери массы. 3 - температура, соответствующая 5% деформации.

Вышеперечисленный комплекс практически полезных свойств полученных ароматических ПА определяет положительный эффект изобретения. Полученные ароматические ПА могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, пленок и клеев.

Класс C08G69/32 из ароматических диаминов и ароматических дикарбоновых кислот с ароматически связанными аминогруппами и карбоксильными группами

способ получения ароматических полиамидинов -  патент 2510633 (10.04.2014)
сшитый арамидный полимер -  патент 2497840 (10.11.2013)
многотоннажный процесс полимеризации полиарамида, содержащего 5(6)-амино-2-(п-аминофенил)бензимидазол (dapbi) -  патент 2488604 (27.07.2013)
комплексная высокопрочная высокомодульная термостойкая нить из гетероциклического ароматического сополиамида и способ ее получения (варианты) -  патент 2487969 (20.07.2013)
способ получения нанокомпозитного материала для термо- и хемостойких покрытий и планарных слоев с высокой диэлектрической проницаемостью -  патент 2478663 (10.04.2013)
способ получения ароматических сополиамидов (варианты) и высокопрочные высокомодульные нити на их основе -  патент 2469052 (10.12.2012)
ароматическое полиамидное волокно на основе гетероциклсодержащего ароматического полиамида, способ его изготовления, ткань, образованная волокном, и армированный волокном композитный материал -  патент 2452799 (10.06.2012)
сшиваемые арамидные сополимеры -  патент 2446194 (27.03.2012)
волокно из ароматического полиамида, способ его изготовления и материал для защитной одежды -  патент 2411313 (10.02.2011)
способ получения термостойкого материала для защитного покрытия -  патент 2373246 (20.11.2009)
Наверх