способ ускоренных испытаний на стойкость к старению полимерных материалов

Классы МПК:G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств
Автор(ы):, , , ,
Патентообладатель(и):Закрытое акционерное общество Научно-производственное предприятие "Полипластик" (RU)
Приоритеты:
подача заявки:
2002-12-24
публикация патента:

Изобретение относится к испытательной технике, а именно к способам испытания полимерных материалов на стойкость к одновременному термическому воздействию и действию УФ-облучения. Сущность технического решения заключается в том, что испытания на стойкость полимерных материалов к старению проводят путем выдержки образцов материалов под воздействием УФ-излучения в интервале длин волн 300-400 нм с дозой 20.0-60.0 В·с/см2 при температуре на 10-20°С ниже температуры начала структурного перехода полимерного материала до визуального изменения цветовых характеристик. Технический результат изобретения заключается в значительном сокращении времени испытаний и повышении экономичности способа испытаний. 1 табл.

Формула изобретения

Способ ускоренных испытаний на стойкость к старению полимерных материалов путем выдержки образцов материала при повышенной температуре под воздействием ультрафиолетового излучения в интервале длин волн 300-400 нм до изменения цветовых характеристик, отличающийся тем, что испытание проводят под воздействием ультрафиолетового излучения дозой 20,0-60 В·с/см2 при температуре на 10-20°С ниже температуры начала структурного перехода полимерного материала.

Описание изобретения к патенту

Изобретение относится к испытательной технике, а именно к способам испытания полимерных материалов на стойкость одновременному термическому воздействию и действию УФ-облучения.

Деструкция под действием света, тепла и кислорода приводит прежде всего к изменению внешнего вида пластмасс. Поэтому замедление деструкционных превращений имеет важное техническое и экономическое значение. Поиск способов предотвращения или уменьшения воздействия окружающей среды (свет, воздух, тепло) на полимерные материалы осуществляется в процессе разработки материалов с различного рода добавками (антиоксидантами, светостабилизаторами и др.). В реальных условиях эксплуатации фотохимические процессы довольно продолжительны (от нескольких недель до нескольких лет). Такие длительные испытания неприемлемы при разработке новых материалов. Правильный подход к торможению деструкционных процессов возможен лишь при четких представлениях о фотохимических реакциях в полимерах и о взаимосвязи этих факторов с другими факторами окружающей среды. При атмосферном старении деструкцию инициирует ультрафиолетовая часть солнечного света, т.е. излучение с длиной волны способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538=290-400 нм. В случае прогнозирования сроков службы материалов в изделиях вполне приемлемыми могут быть 5-20-кратные ускорения испытаний по сравнению с реальными условиями эксплуатации. Установки и способы для проведения подобных испытаний подробно описаны в научной и патентной литературе [например, Ренби Б., Рабек Я. Фотодеструкция, фотоокисление, фотостабилизация полимеров. М.: Мир, 1978, с.488-535]. Кроме того, следует учитывать предысторию полимерного материала, т.е. те термические воздействия, которым подвергается полимер на стадии получения (синтез), компаундирования, изготовления изделия (экструзия, литье под давлением и др.).

В патенте [US, патент 5138892, 73-8656, 1992] описан способ ускоренного испытания на светостойкость, который заключается в том, что образцы, расположенные вокруг источника излучения, вращают вокруг собственной оси, имитируя условия “день-ночь”. Фиксируют температуру светового потока (90-105°) на образец через определенный набор светофильтров. Температура поддерживается постоянной за счет принудительного потока воздуха между светофильтром и образцом. Метод позволяет максимально приблизиться к реальным условиям эксплуатации материалов в условиях светопогоды. Показано, что экспозиции в приборе 200, 400, 600 и 800 часов соответствуют реальным условиям, соответственно 6, 12, 18 и 24 месяца при интенсивности излучения 180 В/м2. Изобретение относится к прогнозированию сроков службы материалов в изделиях.

Такого рода испытания достаточно продолжительны (сотен до тысяч часов) и обычно применяются при решении вопросов прогнозирования сроков службы и/или поведения полимерных материалов в условиях реальной эксплуатации в изделиях.

Известен способ [SU, а.с. 1760435, G 01 N 17/00, 1992] моделирования светового старения материала. Испытуемый материал облучают в вакууме светом узкополосного спектра, фотохимически активного к данного типа материалу (длиной волны менее 200 нм), при этом используют спектр с энергией кванта более 10 эВ, превышающий энергии связей материала. За счет максимального поглощения такого света материалом происходит ускоренное старение. После облучения в течение заданного времени фиксируют механические свойства материала, по изменению которых судят о его старении.

Недостатком этого способа является существенное различие модельных условий, предлагаемых в эксперименте, с реальными условиями солнечного излучения на поверхности земли. Солнечный свет, достигающий поверхности земли, после фильтрации в слоях атмосферы имеет спектр с длинами волн от 280 до 300 нм. Кроме того, испытание в вакууме не имитирует условий эксплуатации изделий в естественной среде, полностью исключая составляющую окисления кислородом воздуха. Время проведения испытаний порядка 150 часов.

В способе испытания на светостойкость полимерных материалов, описанном в [SU, а.с. 1071948, G 01 N 17/00, 1984], на образец периодически воздействуют импульсным излучением с длительностью импульсов 0.1-1.0 мс, частотой 0.1-10 Гц и дозой 1019-1021 квант/с·см 2. Спектр излучения лампы близок к солнечному. О светостойкости судят по времени старения пленок ПВХ (до интенсивного окрашивания при облучении в течение 120 часов). Изобретение позволило в 2-2.5 раза ускорить продолжительность испытания по сравнению с ранее известными методами. Однако даже экспозиции в 120 ч являются слишком продолжительными и неприемлемы для экспресс-оценки светостойкости полимерных материалов ни в случае отработки рецептур, ни для решения о использовании данного материала в изделие на стадии пуска производства. В техническом решении [DE, заявка 3443604, G 01 N 17/00, 1985] описан прибор для испытаний на погодостойкость совершенно новой конструкции, в качестве источника излучения в котором используется специальная металлическая галогенная лампа мощностью 1.5 кВ. В диапазоне длин волн 300-400 нм интенсивность излучения может достигать от 20-60 до 80-120 мВ/см2 , при этом разогрев образца может быть до 100°С. Поддержание температуры постоянной достигается дополнительным охлаждением лампы, фильтра или приспособления для крепежа образца. Предлагаемый прибор позволяет значительно ускорить анализ (в 10-15 раз) по сравнению с известными методами испытаний. В примерах приводятся сравнительные данные испытаний в приборе новой конструкции и при использовании в качестве источника ультрафиолетового излучения угольной дуги. В качестве показателя оценки изменения свойств авторами было выбрано полное цветовое различие способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538Е. Например, для листа толщиной 0.4 мм из ПВХ для получения способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538Е=2 облучение под источником угольной дуги составляет 450 часов, а в прелагаемом приборе всего 35 часов, т.е. достигается ускорение в 12.9 раза.

Недостатком данного изобретения является сложность конструкции самого прибора, заключающаяся как в необычности самой лампы, так и в дополнительном охлаждении как лампы, фильтров, так и в некоторых случаях самого испытуемого образца.

Наиболее близким к изобретению является способ испытания на светостойкость поливинилхлоридных пленок, заключающийся в том, что на образец материала воздействуют излучением, спектр которого соответствует солнечному, и определяют изменение параметров материала, по которому судят о светостойкости [SU, а.с. 1067412, G 01 N 17/00, 1984]. В данном способе используют ксеноновую лампу, испытание проводят при 30°С и интенсивности излучения 0.05 кал/см2мин. При этом определяют коэффициент сохранения белизны, относительное удлинение, толщину фотодеструктированного слоя. Способ позволил выявить коэффициент ускорения старения, равный 5.3, т.е. если в естественных условиях испытания проводились один год (18740 часов), то при испытании по изобретению достаточно 1632 часа.

Метод эффективен при прогнозировании срока службы материалов в изделиях.

Описанные в изобретении подходы требуют длительных временных затрат, что не приемлемо как на стадии отработки рецептур, так и при сравнительном контроле материалов на светостойкость при решении о запуске материала в производство изделий. Длительность испытаний является главным недостатком всех вышеописанных методов.

Целью изобретения является повышение производительности и экономичности способа испытания стойкости полимерных материалов к действию УФ-облучения на ранних стадиях разработки базовых и новых термо-светостабилизированных полимерных материалов (выбор оптимальных систем термо- и светостабилизаторов), а также на стадии отбраковки полимерных материалов с недостаточно эффективными термо-светостабилизирующими рецептурами.

Указанная цель достигается тем, что испытания на светостойкость проводят путем выдержки материала при температуре на 10-20°С ниже температуры начала структурного перехода в полимерном материале под воздействием УФ-излучения в интервале длин волн 300-400 нм дозой 20.0-60.0 В·с/см2 до изменения цветовых характеристик полимерного материала.

Испытания проводятся на воздухе. Температуры испытания выбираются как температуры на 10-20°С ниже температур структурных переходов: для аморфных полимеров - температуры стеклования, для кристаллизующихся - температуры начала плавления. При проведении испытаний в условиях, выходящих за пределы, заявляемые в предлагаемом техническом решении, не достигается нужный результат. Например, испытание при более высокой температуре приведет к потере формоустойчивости образца, а испытания при более низкой температуре окажутся более продолжительными.

На ранних стадиях разработки необходимы методики, позволяющие провести быструю отбраковку ненужных рецептур, оценить термо-светостойкость исходных базовых полимерных материалов и выбрать рецептуры оптимального состава.

Способ реализуется следующим образом.

Испытываемые образцы помещают в установку, имеющую источник излучения с указанным диапазоном длин волн и возможностью нагрева образца до нужной температуры за относительно короткое время, не превышающее 0.5 часа. Температуру на поверхности образца измеряют контактной термопарой. Для реализации этого способа можно использовать любые установки, в которых нагрев образца может осуществляться как только за счет излучения от лампы, так и при одновременном воздействии излучения лампы и подогрева образца, например при размещении образца под лампой на обогреваемой пластине или размещении лампы в термошкафу. После испытания фиксируют белизну, индекс желтизны и цветовое различие между облученными и необлученными образцами согласно стандарту ASTM D11925 “Определение цветовых характеристик” с помощью спектрофотоколориметра. По предлагаемому изобретению испытание проводят на установке, в качестве источника излучения в которой используется ртутная лампа (тип ДРТ 1000 или ДРТ 1200) или любая другая лампа, позволяющая в интервале длин волн 300-400 нм воздействовать на полимерный материал дозой 20-60 В·с/см2. Если можно реализовать необходимые условия для испытания, то в эксперименте могут быть использованы фирменные приборы типа Xenotest.

Фиксируется время до появления видимых изменений цвета. Затем на приборе определяют величины белизны (W), желтизны (G), цветового различия (способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538Е) в системе CIELAB, рассчитываемые по формулам:

G=100(1.28X-1.06Z)/Y

W=100-способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538E(LAB)

способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538E=[(способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538A) 2+(способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538B) 2+(способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538L) 2]1/2

В примере 1 приведены сравнительные данные испытаний материалов, проведенные по условиях прототипа.

Пример 2.

Пластина №1 из ПВХ (нестабилизированный) (цвет натуральный) толщиной 2 мм и пластина №2 из ПВХ (термо-светостабилизированная композиция) (цвет натуральный) толщиной 2 мм помещаются в прибор Ксенотест.

Тстеклования ПВХ=95°,

Тиспытаниястеклования-20°=75°.

Температура Фиксируется на поверхности образца контактной термопарой, время прогрева 0.5 часа. Доза облучения 60.0 В·с/см 2 (дозиметр UV-Mesgerat, Original HANAU, Germany). Через 6 часов появляются визуальные изменения цвета образцов. С помощью спектроколориметра оценивают цветовые характеристики: белизну (W0 - до и после - Wx облучения), желтизну (G0 - до и после - Gx облучения) и цветовое различие (способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538Е) образцов до и после облучения. Результаты испытаний приведены в таблице.

Пример 3.

Диск №2 из ПП (нестабилизированный) (цвет натуральный) толщиной 2 мм и диск №3 из ПП (термо-светостабилизированная композиция) (цвет натуральный) толщиной 2 мм помещаются под лампу ДРТ1200.

Тплавления ПП=170°,

Т испытанияплавления ПП-20°=150°.

Время прогрева 0.5 часа. Доза облучения 31.5 В·с/см 2. Через 6 часов появляются видимые изменения цвета нестабилизированных образцов. Результаты испытаний приведены в таблице.

Пример 4.

Пластина №4 из тальконаполненного ПА6 (нестабилизированный) (цвет серый) толщиной 3 мм и пластина №5 из тальконаполненного ПА6 (светостабилизированная композиция) (цвет серый) толщиной 3 мм помещаются под лампу ДРТ1000.

Tначала плавления ПА=190°,

Тиспытания начала плавления-10°=180°.

Время прогрева 0.5 часа. Доза облучения 27.5 В·с/см 2. Через 0.5 часа появляются видимые изменения цвета нестабилизированных образцов. Результаты испытаний приведены в таблице.

Пример 5.

Диск №7 из стеклонаполненного полибутилентерефталата (ПБТ) (нестабилизированный, цвет натуральный) толщиной 2 мм и диск №8 из стеклонаполненного ПБТ (термо-светостабилизированная композиция, цвет натуральный) толщиной 2 мм помещаются под лампу ДРТ1200.

Тначала плавления ПБТ=200°,

Тиспытанияначала плавления-18°=182°.

Время прогрева 0.5 часа. Доза облучения 32.4 В·с/см 2. Через 3 часа появляются видимые изменения цвета нестабилизированных образцов. Результаты испытаний приведены в таблице.

Пример 6.

Диск №9 из стеклонаполненного полисульфона (ПСФ) (нестабилизированный, цвет натуральный) толщиной 2 мм и диск №10 из стеклонаполненного ПСФ (термо-светостабилизированная композиция, цвет натуральный) толщиной 2 мм помещаются под лампу ДРТ1000.

Тстеклования ПСФ=190°,

Т испытаниястеклования-15°=175°.

Время прогрева 0.5 часа. Доза облучения 20.0 В·с/см 2. Через 5 часов появляются видимые изменения цвета нестабилизированных образцов. Результаты испытаний приведены в таблице.

Из данных, приведенных в таблице, видно, что изменения, которые достигаются при старении в условиях предлагаемых по прототипу, достигаются в течение 1632 часов. Аналогичные изменения при испытании по прелагаемому методу достигаются уже спустя 0.5-6.0 часов облучения. Таким образом, предлагаемый способ является значительно более производительным и экономичным по сравнению с известными. Использование ртутных ламп для такого рода испытаний обеспечивает значительную экономию денежных затрат на проведение эксперимента (стоимость ксеноновой лампы 1500Хе ~ 600$, стоимость лампы ДРТ 1000 - 1500 руб). Предлагаемый способ испытания позволяет резко ускорить проведение эксперимента по испытанию эффективных термо-светостабилизаторов, т.е. предлагается “экспресс-способ”, а также отбраковать материалы с недостаточной светостойкостью на стадии решения о запуске материалов в производство.

способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538 способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538 способ ускоренных испытаний на стойкость к старению полимерных   материалов, патент № 2243538

Класс G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств

способ определения коррозионного состояния подземной части железобетонных опор -  патент 2528585 (20.09.2014)
способ прогнозирования долговечности промышленных противокоррозионных лакокрасочных покрытий для металлических поверхностей -  патент 2520164 (20.06.2014)
портативная лабораторно-полевая дождевальная установка -  патент 2519789 (20.06.2014)
способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением -  патент 2515174 (10.05.2014)
способ определения плотности дефектов поверхности оптической детали -  патент 2515119 (10.05.2014)
устройство для контроля проникновения локальной коррозии в металлические конструкции -  патент 2510496 (27.03.2014)
способ прогнозирования аварийного технического состояния трубопровода канализационной системы -  патент 2508535 (27.02.2014)
способ оценки стойкости сварных изделий из низкоуглеродистых сталей к коррозионному растрескиванию под напряжением -  патент 2506564 (10.02.2014)
способ оценки стойкости стальных изделий против локальной коррозии -  патент 2504772 (20.01.2014)
установка для коррозионных испытаний -  патент 2502981 (27.12.2013)
Наверх