состав сварочной проволоки

Классы МПК:B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 
C22C38/12 содержащие вольфрам, тантал, молибден, ванадий или ниобий
C22C38/24 с ванадием
Автор(ы):, , , , ,
Патентообладатель(и):Сурков Алексей Владимирович (RU),
Павлов Николай Васильевич (RU),
Абраменко Денис Николаевич (RU),
Струнец Владимир Константинович (RU),
Бастаков Леонид Антонинович (RU),
Кипиани Пармен Николаевич (RU)
Приоритеты:
подача заявки:
2003-05-14
публикация патента:

Изобретение может быть использовано при сварке и наплавке изделий из высокоуглеродистых сталей, работающих при больших знакопеременных нагрузках, в частности, для восстановления узлов и деталей железнодорожного подвижного состава. Сварочная проволока содержит, мас.%: углерод 0,04-0,10, кремний 0,2-0,8, марганец 0,9-1,6, ванадий 0,1-0,6, кальций 0,0012-0,002, медь не более 0,25, хром не более 0,25, молибден не более 0,08, сера не более 0,025, фосфор не более 0,030, железо - остальное. Отношение содержания углерода к суммарному содержанию молибдена и ванадия должно составлять 0,15-0,22. Отношение содержания серы к суммарному содержанию кальция и марганца должно быть в пределах 0,016-0,028. Состав обеспечивает получение сочетание высоких оптимальных значений прочности, пластичности и стойкости наплавленного металла к хрупкому разрушению.

Формула изобретения

Состав сварочной проволоки, содержащий углерод, хром, кремний, марганец, молибден, ванадий, серу, фосфор, кальций, железо, отличающийся тем, что он дополнительно содержит медь при следующем соотношении компонентов, мас.%:

Углерод 0,04-0,10

Кремний 0,2-0,8

Марганец 0,9-1,6

Ванадий 0,1-0,6

Кальций 0,0012-0,002

Медь Не более 0,25

Хром Не более 0,25

Молибден Не более 0,08

Сера Не более 0,025

Фосфор Не более 0,030

Железо Остальное

при этом отношение содержания углерода к суммарному содержанию молибдена и ванадия должно составлять 0,15-0,22, а отношение содержания серы к суммарному содержанию кальция и марганца должно быть в пределах 0,016-0,028.

Описание изобретения к патенту

Изобретение относится к сварке и касается состава сварочной проволоки для сварки и наплавки изделий из высокоуглеродистых сталей, работающих при больших знакопеременных нагрузках, и может быть использовано, преимущественно, при восстановлении узлов и деталей железнодорожного подвижного состава.

Известен состав сварочной проволоки, содержащий углерод, хром, кремний, марганец, молибден, ванадий, серу, фосфор, железо, в который введен кальций при следующем соотношении компонентов, мас.%:

Углерод 0,06-0,10

Хром 0,9-1,2

Кремний 0,4-0,7

Марганец 1,55-1,8

Молибден 0,5-0,7

Ванадий 0,2-0,45

Сера 0,025-0,04

Фосфор 0,025-0,030

Кальций 0,05-0,2

Железо Остальное

при этом отношение содержания углерода к суммарному содержанию молибдена и ванадия должно составлять 0,066-0,087, а отношение содержания серы к суммарному содержанию кальция и марганца должно быть в пределах 0,015-0,020 (см. патент РФ № 2104138, кл. В 23 К 35/30, опубл. 1998).

К недостаткам данного состава можно отнести нестабильное мерцающее горение дуги, а также возможность образования горячих трещин и сравнительную хрупкость сварного шва.

Наиболее близким из известных по своей технической сущности и достигаемому результату является выбранный в качестве прототипа состав сварочной проволоки, содержащий углерод, хром, кремний, марганец, молибден, ванадий, кальций, серу, фосфор и железо (см. патент РФ № 2167037, кл. В 23 К 35/30, опубл.2001).

К недостаткам прототипа также можно отнести нестабильное мерцающее горение дуги, что может привести к ее гашению, а также возможность образования горячих трещин и сравнительную хрупкость сварного шва.

Сущность заявляемого изобретения выражается в совокупности существенных признаков, достаточных для достижения обеспечиваемого предлагаемым изобретением технического результата, который выражается в получении оптимальных физико-механических свойств металла сварного шва при сварке высокоуглеродистых сталей, а именно: сочетание высоких оптимальных значений прочности, пластичности, стойкости к хрупкому разрушению за счет обеспечения стабильной равномерно распределенной мелкодисперсной структуры при высокой антикоррозийной твердости и прочности металла сварного шва.

Указанный технический результат достигается тем, что в состав сварочной проволоки, содержащий углерод, хром, кремний, марганец, молибден, ванадий, серу, фосфор, кальций, железо, введена медь при следующем соотношении компонентов, мас.%:

Углерод 0,04-0,10

Кремний 0,2-0,8

Марганец 0,9-1,6

Ванадий 0,1-0,6

Кальций 0,0012-0,002

Медь Не более 0,25

Хром Не более 0,25

Молибден Не более 0,08

Сера Не более 0,025

Фосфор Не более 0,030

Железо Остальное

при этом отношение содержания углерода к суммарному содержанию молибдена и ванадия должно составлять 0,15-0,22, а отношение содержания серы к суммарному содержанию кальция и марганца должно быть в пределах 0,016-0,028.

Ванадий, молибден и кальций в предлагаемых пределах введены в состав сварочной проволоки как комплекс карбидообразующих и модифицирующих добавок.

При введении ванадия менее 0,1 мас.% карбиды ванадия образуются в металле сварного шва в незначительном количестве, что приводит к росту зерна при сварке и, как следствие, к снижению ударной вязкости и прочности металла шва.

Повышение содержания ванадия выше 0,6 мас.% приводит к чрезмерному напряжению особенно границ зерен, что приводит к снижению ударной вязкости и появлению трещин, в основном, в околошовной зоне сварки.

Молибден и ванадий, введенные в предлагаемых пределах, при сварке высокомарганцовистых сталей в металле шва в околошовной зоне образуют карбиды мелкодисперсной формы.

Введение в композицию меди в качестве стабилизирующего компонента магнитной составляющей электрической дуги и пластификатора технологического процесса обеспечивает повышение сопротивляемости против горячих трещин и хрупкого разрушения, вязкости в сочетании с высокой антикоррозийной твердостью и прочностью сварного шва, что обеспечивает повышение эффективности и технологичности сварки и наплавки изделий из высокоуглеродистых сталей, при этом увеличенное содержание меди ведет к ухудшению технико-экономических характеристик данного состава и неоправданному резкому увеличению стоимости сварочных электродов.

Экспериментальным путем было установлено, что соотношение содержание углерода и суммарного содержания молибдена и ванадия, позволяющее получить оптимальную стабильную структуру и высокое качество поверхности металла сварного шва при сварке высокоуглеродистых сталей с равномерно распределенными мелкодисперсными карбидами должно отвечать следующей зависимости:

C:(Mo+V)=0,15-0,22,

где С, V, Мо - содержание углерода, ванадия, молибдена, мас.%.

При увеличении данного соотношения более 0,22% ухудшается состав карбидной зоны металла шва - появляются менее твердые карбиды цементного типа.

При снижении данного соотношения менее 0,15% снижается прочность металла сварного шва за счет уменьшения количества карбидной фазы.

Кальций введен в количестве 0,0012-0,002 мас.% как раскислительный компонент и образует в металле сварного шва оксисульфиды глобулярной формы. При содержании кальция ниже 0,0012 мас.% ухудшается морфология сульфидов, приобретающих игольчатую форму, что вызывает резкое снижение стойкости металла шва к хрупкому разрушению.

Избыточное содержание кальция выше 0,002 мас.% приводит к выделению оксисульфидов по границам зерен и снижению стойкости металла шва к хрупкому разрушению.

Оптимальное соотношение содержание серы и суммарного содержания кальция и марганца, позволяющее получить высокое качество поверхности металла сварного шва с минимальным содержанием неметаллических включений по границам зерен, а также с мелкими оксисульфидами глобулярной формы, было определено экспериментальным путем и отвечает следующей зависимости:

S:(Са+Мn)=0,016-0,028,

где S, Са, Мn - содержание серы, кальция, марганца, мас.%.

При увеличении данного соотношения более 0,028 мас.% снижаются пластические свойства металла сварного шва за счет выделения при сварке высокоуглеродистых сталей в металле шва сульфидов марганца игольчатой формы, что приводит к снижению стойкости, а также к образованию трещин и последующему хрупкому разрушению сварного шва.

Снижение данного соотношения менее 0,016 мас.% может привести к выделению оксисульфидов по границам зерен и снижению стойкости металла сварного шва к хрупкому разрушению.

Как показывают экспериментальные данные, предлагаемая сварочная проволока при одновременном сочетании оптимальных соотношений С:(Мо+V)=0,15-0,22 и S:(Са+Мn)=0,016-0,028, а также при содержании остальных указанных компонентов в предлагаемом диапазоне позволяет получить хороший комплекс физико-механических свойств металла сварного шва, а именно: сочетание высоких оптимальных значений прочности, пластичности, стойкости к хрупкому разрушению.

Такое сочетание физико-механических свойств металла обеспечивается стабильной структурой металла сварного шва, а также наличием равномерно распределенных мелкодисперсных карбидов, которые способствуют образованию мелкого зерна в металле сварного шва.

На базе ОАО “Электросталь” Московской области были изготовлены несколько вариантов сварочной проволоки различного состава. Изготовленной сварочной проволокой диаметром 3 мм производили сварку колесной стали следующего состава, мас.%: С 0,04-0,10; Si 0,5; Mn 1,1; V 0,2; Са 0,0015; Сu 0,2; Cr 0,2; Мо 0,06; S 0,02; Р 0,03; Fe - остальное.

Режим сварки: Iсв=320±20 A, U св=29±2В, Vсв=20 м/ч.

Температура нагрева 160°С.

После сварки вырезанные стандартные образцы подвергались визуальному осмотру и механическим испытаниям.

Наряду с испытаниями образцов сваренных предлагаемой сварочной проволокой качественной оценке подвергались образцы металлов сварного шва, сваренных проволокой 08ХСМФА (прототип).

Режим сварки тот же, что и в случае с предлагаемой сварочной проволокой, но даже при температуре предварительного подогрева 180°С в металле шва, сваренного проволокой-прототипом, появляются мелкие волосяные трещины размером от 1 мм по всей длине,

Металлографический анализ показал, что металл сварного шва имеет многочисленные сульфиды марганца игольчатой формы. Твердость металла сварного шва составляет 300-330 HV.

В результате проведенных испытаний на основании полученных данных можно установить, что для получения стабильной структуры металла сварного шва и высоких физико-механических свойств для сварки высокоуглеродистых сталей необходимо использовать сварочную проволоку предлагаемого состава с учетом предлагаемых соотношений.

Результаты исследований на прочность и ударную вязкость подтверждаются ранее полученными результатами на качественную оценку жестких проб для горячих и холодных трещин. Кроме этого, наличие трещин на натуральных образцах полностью совпадает с наличием трещин на исследуемых образцах.

Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 

быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
сварочная проволока -  патент 2511382 (10.04.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
сварочная проволока из нержавеющей стали с флюсовым сердечником для сварки оцинкованного стального листа и способ дуговой сварки оцинкованного стального листа с применением указанной сварочной проволоки -  патент 2482947 (27.05.2013)
сварочная проволока из низкоуглеродистой легированной стали -  патент 2477334 (10.03.2013)
способ нанесения покрытия на поверхность деталей с помощью электроконтактной сварки с использованием порошкового присадочного материала, содержащего железный порошок, и присадочный материал для его осуществления -  патент 2473413 (27.01.2013)
твердый припой -  патент 2469829 (20.12.2012)

Класс C22C38/12 содержащие вольфрам, тантал, молибден, ванадий или ниобий

стальной лист и стальной лист с покрытием, обладающий превосходной формуемостью, и способ его производства -  патент 2524030 (27.07.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
малоуглеродистая легированная сталь -  патент 2505619 (27.01.2014)
низколегированная конструкционная сталь с повышенной прочностью -  патент 2505618 (27.01.2014)
способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-nb с термоупругими - ' мартенситными превращениями -  патент 2495946 (20.10.2013)
низкоуглеродистая низколегированная сталь для изготовления крупного горячекатаного сортового и фасонного проката -  патент 2495148 (10.10.2013)
неориентированная магнитная листовая сталь и способ ее изготовления -  патент 2485186 (20.06.2013)
высокопрочный свариваемый арматурный профиль -  патент 2478727 (10.04.2013)
стальной лист для производства магистральной трубы с превосходной прочностью и пластичностью и способ изготовления стального листа -  патент 2478133 (27.03.2013)
рельсовая сталь с превосходным сочетанием характеристик износостойкости и усталостной прочности при контакте качения -  патент 2459009 (20.08.2012)

Класс C22C38/24 с ванадием

Наверх