реактор для обработки жидкостей

Классы МПК:C02F1/46 электрохимическими способами
Автор(ы):,
Патентообладатель(и):Государственное научное учреждение Научно-исследовательский институт высоких напряжений при Томском политехническом университете (RU)
Приоритеты:
подача заявки:
2003-04-22
публикация патента:

Изобретение относится к устройствам плазмохимической обработки жидкостей, в том числе для очистки сточных вод и подготовки питьевой воды. Технический результат - снижение энергозатрат и улучшение качества получаемой воды за счет повышения эффективности обработки воды. Реактор содержит цилиндрический корпус, к которому подсоединен узел создания смеси жидкости и газа, электродную систему и патрубки для подвода и отвода смеси жидкости и газа. Корпус выполнен из изоляционного материала. На наружной поверхности корпуса размещен кольцевой электрод, а внутри корпуса коаксиально укреплен стержневой электрод. Диэлектрическая проницаемость материала корпуса не менее диэлектрической проницаемости обрабатываемой жидкости. Объемное соотношение обрабатываемых газа и жидкости не превышает единицу. 1 ил., 2 табл.

Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Реактор для обработки жидкостей, включающий цилиндрический корпус, к которому подсоединен узел создания смеси жидкости и газа, электродную систему и патрубки для подвода и отвода смеси жидкости и газа, отличающийся тем, что корпус выполнен из изоляционного материала, на наружной поверхности корпуса размещен кольцевой электрод, а внутри корпуса коаксиально укреплен стержневой электрод, причем диэлектрическая проницаемость материала корпуса не менее диэлектрической проницаемости обрабатываемой жидкости, объемное соотношение обрабатываемых газа и жидкости не превышает единицы.

Описание изобретения к патенту

Изобретение относится к устройствам плазмохимической обработки жидкостей, в том числе для очистки сточных вод и подготовки питьевой воды.

Известно устройство для обработки воды (патент РФ N2004500, МПК 7 C 02 F 1/46, В 03 С 5/00, опубл. 15.12.93), которое состоит из камеры для обрабатываемой жидкости, высоковольтного источника энергии, высоковольтных и заземленных электродов. Высоковольтные электроды выполнены с боковыми выступами, направленными в одну сторону. Для повышения скорости очистки путем создания интенсивной циркуляции воды в устройстве заземленный электрод выполнен секционированным, с направленными в одну сторону выступами на боковой поверхности каждой секции.

Недостатками этого устройства являются высокие энергозатраты, связанные с большими потерями на джоулев нагрев при указанных временах воздействия импульсов напряжения и низкая частота следования импульсов 5-30 Гц, что снижает производительность обработки. Кроме того, обработке подвергается не вся вода, а только часть, прилегающая к каналу разряда, что снижает эффект обработки, а также низкий ресурс работы изоляции электродов.

Наиболее близким по технической сущности к предлагаемому решению является выбранное нами за прототип устройство (Рязанов Н.Д., Миненков В.Р. "Исследование эффективности обеззараживания и очистки воды плазмой дуги переменного тока в водовоздушной смеси" в сб. "Очистка воды и стоков". Томск, 1994, с.19-23), которое предназначено для обработки воды в водовоздушной среде высоковольтными электрическими разрядами. Оно состоит из корпуса, электродной системы, патрубков подачи и вывода воды. Патрубок ввода размещен на крышке корпуса, патрубок вывода - на его днище. В верхней части корпуса расположена горизонтальная перфорированная перегородка, предназначенная для диспергирования потока воды.

Недостатками этого устройства являются высокие удельные энергозатраты (0,4 кВтреактор для обработки жидкостей, патент № 2233244ч/м3) на обработку воды, а также увеличение концентрации азотных соединений (в среднем на 15% нитритов и на 10% нитратов).

Основной технической задачей предложенного решения является снижение энергозатрат до реактор для обработки жидкостей, патент № 22332440,1 кВтреактор для обработки жидкостей, патент № 2233244ч/м3.

Указанная техническая задача достигается тем, что в реакторе для обработки воды, включающем цилиндрический корпус, к которому подсоединен узел создания смеси жидкости и газа, электродную систему и патрубки подвода и отвода смеси жидкости и газа, согласно предложенному решению корпус выполнен из изоляционного материала, на наружной поверхности корпуса размещен кольцевой электрод, а внутри корпуса коаксиально укреплен стержневой электрод, причем диэлектрическая проницаемость материала корпуса не менее диэлектрической проницаемости обрабатываемой жидкости, а объемное соотношение обрабатываемых газа и жидкости не превышало единицы.

Пример конкретного выполнения.

На чертеже приведена схема реактора для обработки воды.

Реактор состоит из цилиндрического изоляционного корпуса 1, к которому через патрубок подачи смеси 2 подсоединен узел создания смеси жидкости и газа 3. Узел представляет собой резервуар, в который насосом подается вода. На дне резервуара расположена запаянная с одной стороны трубка, изготовленная из пористой нержавеющей стали. В эту трубку из баллона подается сжатый воздух, который через поры в нержавейке попадает в воду. Подготовленная таким образом смесь под давлением насоса поступает в реактор. На наружной поверхности корпуса 1 размещен кольцевой электрод 4, внутри корпуса 1, между его крышкой 5 и дном 6 укреплен стержневой электрод 7. К электродам 4 и 7 подключен генератор высоковольтных импульсов 8. Наружный кольцевой электрод 4 является потенциальным, электрод 7 - заземленным. Смесь жидкости и газа, прошедшая в зазоре между электродами 4 и 7, обрабатывается электрическими высоковольтными разрядами и отводится из реактора через патрубок отвода смеси 9. Предлагаемый реактор имеет следующие параметры: диаметр высоковольтного электрода 60 мм, толщина корпуса 10 мм, разрядный промежуток 10 мм. Материал корпуса - керамика с диэлектрической проницаемостью реактор для обработки жидкостей, патент № 2233244=9.

Условия обработки были следующие. Концентрация двухвалентного железа в обрабатываемой воде была 3 мг/л. Проводимость воды 104 Омреактор для обработки жидкостей, патент № 2233244см. Смесь воды и воздуха с расходом 500 л/ч подавалась в реактор и обрабатывалась высоковольтными импульсами. Напряжение на реактор подавалось от импульсного генератора. Мощность импульсного генератора - 100 Вт на согласованной активной нагрузке 150 Ом, напряжение на ней - 17,5 кВ, амплитуда напряжения холостого хода Ua=35 кВ. Генератор формирует импульсы с частотой f=1000 Гц, длительностью реактор для обработки жидкостей, патент № 2233244и=300 нс, фронтом реактор для обработки жидкостей, патент № 2233244ф=30 нc.

Реактор работает следующим образом. Смесь воды и воздуха, приготовленная в узле 3, подводится к реактору через патрубок 2 и попадает в зазор между электродами 4 и 7. К электродам 4 и 7 от генератора подаются высоковольтные импульсы. Под воздействием высоковольтных импульсов в газовых пузырьках, находящихся в смеси между электродами 4 и 7, возникают ионизационные процессы, в пузырьках нарабатывается озон, который обеззараживает воду. Из реактора вода поступает в бак, где отстаивается в течение 15 мин, требуемых для окисления железа. Затем вода отфильтровывается бумажным фильтром обеззоленным красная лента. Отфильтрованная вода подвергалась анализу на содержание железа по методике ГОСТ 4011-72 “Вода питьевая. Методы измерения массовой концентрации общего железа”. Результаты анализа приведены в табл.1. В каждом измеряемом случае количество обрабатываемой воды оставалось неизменным и энергозатраты на 1 м3 воды составили 0,2 кВтреактор для обработки жидкостей, патент № 2233244ч.

В табл.1 приведены данные изменения диэлектрической проницаемости жидкости от диэлектрической проницаемости корпуса, а в табл.2 - соотношение обрабатываемых газа и жидкости.

Как следует из табл.1 и 2, при соблюдении заявляемых условий энергозатраты составляют не более 0,1 кВтреактор для обработки жидкостей, патент № 2233244ч/м3 (см. колонку 11 табл. 2).

Класс C02F1/46 электрохимическими способами

способ обесшламливания оборотных сапонитсодержащих вод и устройство для его реализации -  патент 2529220 (27.09.2014)
способ получения активированной воды -  патент 2524927 (10.08.2014)
способ очистки воды и водных растворов от анионов и катионов -  патент 2519383 (10.06.2014)
способ очистки подземных вод от ионов бора и устройство для его осуществления -  патент 2518627 (10.06.2014)
установка для электрохимической активации воды -  патент 2518606 (10.06.2014)
электрохимическая модульная ячейка для обработки растворов электролита -  патент 2516226 (20.05.2014)
установка для получения продуктов анодного окисления растворов хлоридов щелочных или щелочноземельных металлов -  патент 2516150 (20.05.2014)
проточный электролитический элемент модульного типа -  патент 2503173 (10.01.2014)
устройство для обезжелезивания подземных вод -  патент 2501740 (20.12.2013)
способ приготовления электроактивированной воды -  патент 2501739 (20.12.2013)
Наверх