керамический флюс для автоматической сварки низколегированных сталей

Классы МПК:B23K35/362 выбор составов флюсов
Автор(ы):, , , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие центральный научно-исследовательский институт конструкционных материалов "Прометей" (RU)
Приоритеты:
подача заявки:
2002-04-04
публикация патента:

Изобретение может быть использовано для автоматической сварки низколегированных хладостойких сталей повышенной и высокой прочности низколегированными проволоками. Флюс содержит, мас.%: плавиковый шпат 22-30, электрокорунд 14-25, обожженный магнезит 22-31, сфеновый концентрат 10-20, марганец металлический 1,3-3,0, ферротитан 1,2-2,8, ферробор 0,1-0,8, титаномагнетит 0,4-0,9, ферросилиций 0,3-1,0, силикат натрия-калия 7,7-8,9. Отношение суммарного содержания магнезита, плавикового шпата и одной трети сфенового концентрата к суммарному содержанию двух третей сфенового концентрата, двух третей силиката натрия-калия и одной второй электрокорунда выбрано в пределах 1,7-2,3, отношение ферротитана к ферробору - в пределах 6,0-15,0. Изобретение позволяет улучшить сварочно-технологические свойства керамического флюса за счет снижения вязкости шлака и расширить технологические возможности флюса за счет получения требуемой вогнутой формы сварного шва при сварке угловых и тавровых соединений при сохранении высокой хладостойкости сварного соединения в диапазоне температур от -40 до -50°С. 4 табл.

Формула изобретения

Керамический флюс для автоматической сварки низколегированных сталей, содержащий плавиковый шпат, электрокорунд, обожженный магнезит, марганец металлический, ферротитан, ферробор и связующую добавку, отличающийся тем, что он содержит дополнительно ферросилиций в количестве 0,2-0,5 по отношению к количеству марганца металлического, а также сфеновый концентрат и титаномагнетит, а в качестве связующей добавки - силикат натрия-калия при следующем соотношении компонентов, мас.%:

Плавиковый шпат 22 - 30

Электрокорунд 14 - 25

Обожженный магнезит 22 - 31

Сфеновый концентрат 10 - 20

Марганец металлический 1,3 - 3,0

Ферротитан 1,2 - 2,8

Ферробор 0,1 - 0,8

Титаномагнетит 0,4 - 0,9

Ферросилиций 0,3 - 1,0

Силикат натрия-калия 7,7 - 8,9

при этом отношение суммарного содержания магнезита, плавикового шпата и одной трети сфенового концентрата к суммарному содержанию двух третей сфенового концентрата, двух третей силиката натрия-калия и одной второй электрокорунда выбрано в пределах 1,7-2,3, а отношение ферротитана к ферробору - в пределах 6,0-15,0.

Описание изобретения к патенту

Предлагаемое изобретение относится к сварочным материалам, а именно к керамическим (агломерированным) флюсам, и может быть использовано для автоматической сварки низколегированных хладостойких сталей повышенной и высокой прочности низколегированными проволоками в любых отраслях промышленности, например в судостроении для сварки судостроительных конструкций, а также в нефтехимической промышленности для сварки изделий, работающих при низких температурах.

Известен керамический флюс /1/ для (автоматической) сварки низколегированных сталей следующего состава,%:

Магнезит 30-50

Плавиковый шпат 7-10

Глинозем 6-20

Алюминиевый порошок 0,5-3

Мрамор 5-12

Ферротитан 0,2-5

Волластонит 10-40

Ферросилиций 0,2-5

Ферромарганец 0,2-5

Марганцевая руда 2-8

Гематит 1-3

Данный керамический флюс позволяет получить требуемые механические свойства металла шва, в частности требуемую ударную вязкость при отрицательных температурах (до -70°С), обеспечивающую повышение хладостойкости сварного соединения. Это обусловлено высоким коэффициентом основности данного шлака из-за присутствия в нем рудоминеральных компонентов магнезита (MgO), плавикового шпата (CaF2) и волластонита (СаО·SiO2), которые снижают активность кремнезема в шлаке, связывая его в комплексные соединения, и тем самым повышают коэффициент основности шлака. Присутствие в этом флюсе таких компонентов, как марганцевая руда и гематит, придает окислительные свойства шлаку, необходимые для хорошей стойкости против образования пор в теле, а микролегирующая добавка ферротитана позволяет обеспечить высокую хладостойкость металла шва.

Однако присутствие в данном керамическом флюсе компонентов с высокими модифицирующими свойствами в достаточно большом количестве не позволяет получить требуемые сварочно-технологические свойства, что может привести к ухудшению формирования шва и отделимости шлаковой корки из глубоких разделок, а содержание мрамора в указанном количестве будет способствовать ухудшению указанного качества поверхности шва за счет образования на его поверхности неровностей и чешуйчатости.

Известен также керамический флюс для автоматической сварки низколегированных высокопрочных сталей, содержащий компонент с содержанием не менее 95% керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828Аl2О3, волластонит, марганец, силикат натрия, ферротитан, ферробор, синтетический шлак, состоящий из двух третей фтористого кальция (CaF2) и одной трети окиси алюминия (Аl2О3), мрамор, фторид бария и гематит при следующем соотношении компонентов, мас.%:

Обожженный магнезит 23,0-25,6

Синтетический шлак 34,0-38,0

Компонент, содержащий не менее 95% керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828Аl2О3 15,0-17,0

Волластонит 4,2-7,7

Мрамор 1,9-3,6

Фторид бария 2,4-3,1

Гематит 0,5-0,6

Ферротитан 0,5-1,3

Ферробор 0,1-0,2

Марганец 1,4-1,8

Силикат натрия 7,7-8,7

при этом соотношение суммарного содержания обожженного магнезита, двух третей шлака и половины волластонита к суммарному содержанию одной трети шлака, половины волластонита и двух третей силиката натрия выбрано в пределах 1,30-1,45, а отношение титана к бору выбрано в пределах 11,2-30,1 /2/.

Такой керамический флюс для сварки низколегированных высокопрочных сталей, например 12ХН2МФ, как и предыдущий аналог, за счет наличия в нем компонентов с высокими модифицирующими свойствами в указанных количествах обеспечивает хорошие механические свойства сварного шва. Так, значение ударной вязкости металла шва составляет не менее 62,2 Дж/см2 при температуре -60°С.

Однако указанный флюс не позволяет улучшить его сварочно-технологические свойства в условиях многопроходной сварки металла больших толщин из-за присутствия в нем фтористого бария и мрамора, снижающих при этом содержание диффузионно-подвижного водорода, не превышающего 3см3/100 г наплавленного металла (Н.М.).

Кроме того, введение таких компонентов, как мрамора и фтористого бария в указанных количествах в данный керамический флюс, будет способствовать ухудшению сварочно-технологических свойств флюса: ухудшению плавности границы сопряжения металла шва с основным металлом и, следовательно, к снижению качества сварного соединения.

Известен ближайший по составу и достигаемому техническому результату к заявляемому керамический флюс для автоматической сварки низколегированных сталей, содержащий обожженный магнезит, плавиковый шпат, электрокорунд, волластонит, марганец металлический, силикат натрия, ферротитан и ферробор при следующем соотношении компонентов, мас.%:

Обожженный магнезит 23-31

Плавиковый шпат 24-27

Электрокорунд 18-27

Волластонит 11-16

Марганец 0,9-1,8

Силикат натрия 8,3-9,2

Ферротитан 0,5-2,2

Ферробор 0,1-0,9

при этом отношение суммарного содержания обожженного магнезита, плавикового шпата и половины волластонита к суммарному содержанию электрокорунда, половины волластонита и двух третей силиката натрия выбрано в пределах 1,43-2,16, а отношение во флюсе титана к бору выбрано в пределах 4,23-17,1 /3/.

Известный керамический флюс-прототип для сварки низколегированных сталей по сравнению с предыдущими аналогами обеспечивает как высокую хладостойкость сварного шва за счет высокоосновного характера шлакообразующей флюса и за счет наличия в нем волластонита (СаО·SiO2), так и требуемые сварочно-технологические свойства при сварке стыковых сварных соединений.

Недостатком известного керамического флюса-прототипа является высокая вязкость шлака из-за повышенного содержания во флюсе основных окислов относительно кислых, а также из-за низкой термодинамической устойчивости волластонита, которая приводит к ухудшению сварочно-технологических свойств флюса и невозможности получения требуемой вогнутой формы сварочного шва при сварке угловых и тавровых соединений, что также сужает технологические возможности флюса.

Кроме того, большое количество неметаллических включений в данном флюсе из-за большого содержания рудоминеральных компонентов в нем, обуславливает засорение металла шва, особенно при сварке металлических деталей с загрязненными поверхностями, что создает невозможность сваривания последних без предварительной механической зачистки и, следовательно, усложняет процесс сварки.

Техническим результатом предлагаемого изобретения является улучшение сварочно-технологических свойств керамического флюса за счет снижения вязкости шлака и расширение его технологических возможностей за счет обеспечения возможности получения требуемой вогнутой формы сварного шва при сварке угловых и тавровых соединений при сохранении высокой хладостойкости сварного соединения в диапазоне от -40 до -50°С, а также упрощение процесса сварки за счет исключения необходимости доведения сварного шва до требуемой формы и предварительной механической зачистки поверхностей деталей от грунта.

Технический результат достигается тем, что в керамическом флюсе для автоматической сварки низколегированных сталей, содержащем плавиковый шпат, электрокорунд, обожженный магнезит, марганец металлический, ферротитан, ферробор и связующую добавку, согласно изобретению, он также содержит сфеновый концентрат, титаномагнетит и ферросилиций в количестве 0,2-0,5 по отношению к количеству марганца металлического, а в качестве связующей добавки - силикат натрия-калия при следующем соотношении компонентов, мас.%:

Плавиковый шпат 22-30

Электрокорунд 14-25

Обожженный магнезит 22-31

Сфеновый концентрат 10-20

Марганец металлический 1,0-3,0

Ферротитан 1,2-2,8

Ферробор 0,1-0,8

Титаномагнетит 0,4-0,9

Ферросилиций 0,3-1,0

Силикат натрия-калия 7,7-8,9

при этом отношение суммарного содержания магнезита, плавикового шпата и одной трети сфенового концентрата к двум третям силиката натрия и одной второй электрокорунда выбрано в пределах 1,7-2,3, а отношение ферротитана к ферробору - в пределах 6,0-15,0.

Присутствие в керамическом флюсе сфенового концентрата СаО·SiO2·ТiO2 обеспечивает по сравнению с прототипом улучшение формирования металла шва вогнутой формы при сварке угловых и тавровых соединений вследствие снижения сил поверхностного натяжения в металле шва, и улучшение отделимости шлаковой корки за счет увеличения смачиваемости кромок расплавленного металла шва с основным металлом. Это обусловлено наличием в сфеновом концентрате двуокиси титана TiO2, который, находясь в соединении СаТiO2 вместе с SiO2 и Аl2O3, обеспечивает уменьшение вязкости шлака, при этом SiO2 связан в соединение Ca(SiTiO5). Целесообразность введения сфенового концентрата объясняется большей термодинамической устойчивостью к разложению при нагревании по сравнению с волластонитом прототипа, а замена части SiO2 на ТiO2 значительно позволяет улучшить вязкость сварочного шва и, следовательно, вышеуказанные характеристики шлаковой системы по сравнению с прототипом.

Уменьшение содержания сфенового концентрата в керамическом флюсе менее указанного нижнего предела приведет к ухудшению сварочно-технологических характеристик: отделимости шлаковой корки шва (переход к выпуклой поверхности вместо вогнутой для тавровых швов). Повышение содержания сфенового концентрата в керамическом флюсе выше указанного верхнего предела приведет к снижению хладостойкости металла сварного шва.

Введение в керамический флюс природного минерала титаномагнетита ТiO2·Fе2O3 в указанных количествах позволяет связывать неметаллические включения и выводить их в шлак, при этом контролируя их размер, что приведет к очищению металла шва, и позволяет сваривать стали, имеющие поверхностное загрязнение, в том числе выполнять сварку угловых и тавровых швов без зачистки свариваемых деталей от грунта под краску (который наносится на детали для их длительного хранения), что упрощает процесс сварки по сравнению с прототипом.

Снижение количества данного компонента менее указанного нижнего предела приведет к увеличению неметаллических включений в металле шва, а повышение его количества выше верхнего предела - к сложности получения требуемой вогнутости сварного шва углового и таврового соединения и ухудшению сварочно-технологических свойств.

Введение в керамический флюс легирующей добавки - ферросилиция в указанных количествах и отношении к содержанию марганца металлического позволяет обеспечить хорошее раскисление металла шва и оптимальное содержание кремния в нем, что обеспечивает требуемую хладостойкость металла шва в диапазоне температур от -40 до -50°С.

Уменьшение или увеличение содержания данного компонента во флюсе по сравнению с указанными пределами, а также выход за пределы отношения к содержанию марганца металлического приведет к ухудшению механических свойств металла шва при отрицательных температурах.

Введение в керамический флюс в качестве связующей добавки силиката натрия-калия позволяет по сравнению с прототипом улучшить сварочно-технологические свойства при сварке из-за стабилизирующего действия калия на горение дуги и как следствие лучшее формирование шва.

Указанные пределы изменения содержания силиката натрия-калия во флюсе определены с учетом наилучшей грануляции флюса при его изготовлении, т.е. диаметра гранул 0,3-2,0 мм.

Указанные пределы соотношений суммарных содержаний указанных компонентов во флюсе позволяют регулировать в нем оптимальное соотношение кислых и основных окислов, а также содержание кислорода в металле шва, что улучшает вязко-пластичные свойства металла шва при обеспечении требуемой хладостойкости металла шва при отрицательных температурах в диапазоне от -40 до -50°С.

Заданное соотношение суммарного содержания магнезита, плавикового шпата и 1/3 сфенового концентрата к суммарному содержанию 2/3 сфенового концентрата, 2/3 силиката натрия и 1/2 электрокорунда обеспечивает требуемую основность флюса, коэффициент основности - 1,7-2,3. Выбранное соотношение указанных ингредиентов во флюсе обеспечивает хорошие сварочно-технологические свойства при сварке угловых швов проволокой малого диаметра (менее 1,4 мм).

Уменьшение соотношения суммарных содержаний указанных компонентов во флюсе ниже нижнего предела приведет к снижению ударной вязкости в области отрицательных температур, а увеличение более верхнего предела - к снижению сварочно-технологических свойств флюса.

Наличие в керамическом флюсе плавикового шпата и электрокорунда в указанных количествах обеспечивает легкое отделение шлака от поверхности сварного шва и полное покрытие расплавленного металла жидким шлаком.

Уменьшение содержания этих компонентов ниже указанных нижних пределов приведет к ухудшению сварочно-технологических свойств, а увеличение их содержания выше указанных пределов - к ухудшению формирования металла шва, отделимости шлаковой корки.

При этом присутствие в керамическом флюсе обожженного магнезита в указанных количествах обеспечивает повышение хладостойкости металла шва по сравнению с прототипом.

Уменьшение содержания этого компонента во флюсе менее указанного нижнего предела приведет к снижению ударной вязкости металла шва в области отрицательных температур, а повышение содержания этого компонента выше указанного верхнего предела - снижению сварочно-технологических характеристик.

Присутствие в керамическом флюсе легирующего ингредиента металлического марганца в указанных количествах обеспечивает содержание марганца в металле шва в пределах 0,7-1,3%, что обеспечивает требуемые механические свойства металла шва и хорошее расплавление металла шва по сравнению с прототипом.

Увеличение содержания данного компонента выше указанного верхнего предела приведет к увеличению прочности и потере пластичности металла шва, а уменьшение - к ухудшению механических свойств металла шва.

Введение в состав флюса микролегирующих добавок ферротитана и ферробора в указанных количествах, а также выбранное соотношение содержаний ферротитана к ферробору в указанных пределах обеспечивает оптимальную микроструктуру металла шва и, следовательно, повышение его хладостойкости по сравнению с прототипом.

Уменьшение содержания ферробора и ферротитана, а также их соотношения менее указанных нижних пределов соответственно приведет к снижению ударной вязкости в области отрицательных температур.

Превышение содержания ферробора и ферротитана, а также их соотношения выше указанных верхних пределов соответственно приведет к значительному росту прочности шва, но снижению его вязкопластичных свойств.

Предлагаемый керамический флюс для автоматической сварки изготавливают по следующей технологии.

Подготовленные компоненты шихты (просушенные и размолотые до размера гранул 0,2-0,3 мм) взвешиваются дозами на один замес, помещаются в кюбель и транспортируются к смесителю. Смешивание компонентов производится в два этапа: “сухое” и “мокрое” (с жидким раствором силиката натрия-калия). После смешивания влажный флюс поступает на доокатыватель для уплотнения гранул и придания им нужного размера и формы, далее флюс подается в сушильную печь, а затем в прокалочную печь. После охлаждения флюс просеивается, взвешивается и упаковывается.

Было изготовлено пять вариантов предлагаемого керамического флюса, условно обозначенных 1, 2, 3, 4, 5 и приведенных в таблице 1.

Для сварки с этими флюсами использовали образцы из стали 09Г2С и Ст3 размером 200 керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828 500 керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828 20 мм.

Сварку образцов стыковых и угловых тавровых соединений осуществляли автоматическим способом проволокой Св-08ГА, СВ10ГНА и СВ04Н2ГТА диаметром 4 мм на постоянном токе обратной полярности.

Режим сварки стыковых (керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828провол. - 4 мм) в нижнем положении:

Ток (А) 550-550

Напряжение (В) 30-36

Скорость сварки (м/ч) 22-24

Режим сварки угловых тавровых соединений (керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828провол. - 1,4 мм):

Ток (А) 280-320

Напряжение (В) 280-320

Скорость сварки (м/ч) 19

В таблице 2 приведены химические составы металла швов вариантов I, II предлагаемого керамического флюса, а в таблице 3 - механические свойства металла швов и оценка технологических свойств вариантов предлагаемого керамического флюса.

Оптимальные пределы содержания компонентов керамического флюса заявленного состава, а также их соотношения определяли по результатам испытаний ударной работы разрушения металла сварных швов образцов при -40°С и -50°С и по определению химического состава наплавленного металла.

керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828

керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828

Как следует из таблицы 3, сварные швы, полученные при использовании керамического флюса, изготовленного согласно предлагаемому изобретению, обеспечивают работу удара металла шва не менее 50 Дж при температуре испытания -50°С и не менее 60 Дж при температуре -40°С, как у прототипа, а также имеют хорошие сварочно-технологические свойства - легкую (самопроизвольную) отделимость шлаковой корки и хорошее формирование шва при сварке стыковых и тавровых соединений.

Из таблицы 4 также ясно, что сварные швы, полученные с использованием предлагаемого флюса, имеют следующие показатели формы шва: сформированная поверхность сварного шва имеет вогнутую форму, формирование шва идет с плавным переходом от металла шва к основному металлу за счет лучшей смачиваемости металла шва шлаком.

Исходя из результатов испытаний по определению работы, удару разрушения металла шва при -40 и -50°С, из визуальных наблюдений

керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828

керамический флюс для автоматической сварки   низколегированных сталей, патент № 2228828

наплавленного металла шва стыковых и тавровых соединений и плавности перехода в основной металл, а также на основании микроструктурного исследования металла шва был определен оптимальный состав предлагаемого флюса, которым является состав 2, содержание компонентов рудоминеральной и легирующей частей которого указано в таблице 1.

Таким образом, предлагаемый керамический флюс для автоматической сварки низколегированных сталей позволяет улучшить формирование металла шва при сварке угловых и тавровых соединений, что при сохранении высокой хладостойкости сварного соединения в диапазоне температур от -40 до -50°С улучшает сварочно-технологические свойства флюса и расширяет его технологические возможности по сравнению с прототипом.

Источники информации

1. Авт. свидетельство СССР №268143, В 23 К, 49h, 36/10,1970 г., БИ №13.

2. Авт. свидетельство СССР №1706818, В 23 К 35/362, 1992 г., БИ №3.

3. Авт. свидетельство СССР №1298029, В 23 К 35/362, 1987 г., БИ №11 - прототип.

Класс B23K35/362 выбор составов флюсов

флюс для автоматической наплавки ленточным электродом -  патент 2526623 (27.08.2014)
керамический флюс для автоматической сварки и наплавки -  патент 2493945 (27.09.2013)
флюс для сварки -  патент 2492983 (20.09.2013)
керамический флюс-добавка -  патент 2484936 (20.06.2013)
керамический флюс -  патент 2471601 (10.01.2013)
керамический флюс-добавка -  патент 2467853 (27.11.2012)
способ сварки под флюсом -  патент 2465108 (27.10.2012)
шихта для получения сварочного плавленного флюса -  патент 2448824 (27.04.2012)
агломерированный флюс марки 48аф-59 для автоматической сварки трубных сталей категорий х90-х100 -  патент 2442681 (20.02.2012)
способ получения хлорцинкатов аммония -  патент 2410453 (27.01.2011)
Наверх