способ определения момента окончания процесса электролитно- плазменного удаления покрытия

Классы МПК:C25F5/00 Электролитические способы удаления металлических слоев или покрытий
C25F7/00 Конструктивные элементы электролизеров или их сборка для удаления примесей из изделий электролитическим способом; уход или управление
Автор(ы):, , ,
Патентообладатель(и):Уфимский государственный авиационный технический университет
Приоритеты:
подача заявки:
2003-03-03
публикация патента:

Изобретение относится к области электролитно-плазменной обработки поверхностей. Способ определения момента окончания процесса электролитно-плазменного удаления покрытия включает измерение переменной составляющей тока и анализ ее изменения во времени. Переменную составляющую тока подают на полосовой фильтр с граничными частотами 500-700 и 1300-1500 Гц и измеряют действующее значение напряжения на выходе фильтра u. Определяют значение порогового напряжения u0 путем усреднения значения u в течение 20-40 с от начала обработки. Начинают отсчет отрезков времени tk и t, если через 50-70 с от начала обработки напряжение u достигает значения (0,5-0,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0. Конец отсчета времени tk устанавливают по достижении напряжением u значения (0,7-1,0)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0. Момент окончания процесса определяют по достижении t значения (1,4-1,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181tk. Расчет значения площади поверхности, освобожденной от покрытия S, ведут по формуле:способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181где k - эмпирический коэффициент пропорциональности. В случае если через 50-70 с от начала обработки напряжение u не достигает значения (0,5-0,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, процесс электролитно-плазменного удаления покрытия останавливают. Изобретение позволяет повысить качество обрабатываемой поверхности. 1 ил., 1 табл.

Рисунок 1

Формула изобретения

Способ определения момента окончания процесса электролитно-плазменного удаления покрытия, включающий измерение переменной составляющей тока и анализ ее изменения во времени, отличающийся тем, что переменную составляющую тока подают на полосовой фильтр с граничными частотами 500-700 и 1300-1500 Гц, измеряют действующее значение напряжения на выходе фильтра u и определяют значение порогового напряжения u0 путем усреднения значения u в течение 20-40 с от начала обработки, затем начинают отсчет отрезков времени tk и t, при этом, если через 50-70 с от начала обработки напряжение u достигает значения (0,5-0,6) u0, то конец отсчета времени tk устанавливают по достижении напряжением u значения (0,7-1,0) u0, и момент окончания процесса определяют по достижении t значения (1,4-1,6) tk, а расчет значения площади поверхности, освобожденной от покрытия S ведут по формуле

способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181

где k - эмпирический коэффициент пропорциональности,

в случае, если через 50-70 с от начала обработки напряжение u не достигает значения (0,5-0,6) u0, процесс электролитно-плазменного удаления покрытия останавливают, так как покрытие удаляться не будет.

Описание изобретения к патенту

Изобретение относится к области электролитно-плазменной обработки поверхностей и может быть использовано для определения момента окончания электролитно-плазменного удаления с поверхности сталей износостойких покрытий, содержащих в своем составе вентильный металл.

Известен способ определения окончания удаления покрытия при реализации способа электрохимического удаления слоев никеля, хрома или золота с поверхности медной подложки по значению тока [патент США № 4539087, кл. С 25 F 5/00, 7/00. Устройство и способ электрохимического снятия осадков никеля, хрома и золота с меди и ее сплавов. Публ. 03.09.1985]. При обработке потенциал наружного слоя отрицателен, а потенциал подложки - положителен по отношению к электролиту. Величину тока, протекающего через ванну при электролизе, контролируют и ток прерывают, когда величина его падает ниже установленного значения.

Известен способ определения момента окончания удаления покрытия, реализуемый в способе электрохимической обработки поверхности металла путем травления образца, включающем пропускание переменного асимметричного тока через электролитическую ванну с регистрацией скорости изменения тока и напряжения и завершение процесса при достижении этими параметрами минимальных постоянных значений [а.с. СССР № 986973, кл. С 25 F 3/00. Способ электрохимической обработки поверхности металла. Публ. 07.01.1983].

Недостатком аналогов является невозможность контролировать удаление покрытия электролитно-плазменным методом, так как величина тока отражает тепловые процессы, протекающие на аноде, а напряжение является постоянной величиной в ходе обработки.

Наиболее близким по технической сущности является способ определения момента окончания процесса электролитно-плазменного удаления покрытия, включающий измерение переменной составляющей тока и анализ ее изменения во времени. В электрическую цепь включают измерительное сопротивление, переменную составляющую тока измеряют осциллографом по изменению напряжения на измерительном сопротивлении, а момент окончания процесса устанавливают при изменении амплитуды переменной составляющей тока на 2% за время не менее 2 мин [патент РФ № 2119975, кл. С 25 F 5/00. Способ определения момента окончания процесса электролитно-плазменного удаления покрытия. Публ. 10.10.1998].

Недостатком прототипа является невозможность установления факта удаления покрытия без прерывания обработки, отсутствие формулы для расчета площади поверхности, освобожденной от покрытия, а также трудности при определении изменения амплитуды переменной составляющей тока на 2% с помощью осциллографа.

Задачей, решаемой заявляемым изобретением, является повышение качества обрабатываемой поверхности за счет упрощения определения момента окончания удаления покрытия электролитно-плазменным методом.

Поставленная задача решается таким образом, что в способе определения момента окончания процесса электролитно-плазменного удаления покрытия, включающем измерение переменной составляющей тока и анализ ее изменения во времени, переменную составляющую тока подают на полосовой фильтр с граничными частотами 500-700 и 1300-1500 Гц, измеряют действующее значение напряжения на выходе фильтра u и определяют значение порогового напряжения u0 путем усреднения значения u в течение 20-40 с от начала обработки, затем начинают отсчет отрезков времени tk, и t, при этом, если через 50-70 с от начала обработки напряжение u достигает значения (0,5-0,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, то конец отсчета времени tk устанавливают по достижении напряжением u значения (0,7-1,0)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, и момент окончания процесса определяют по достижении t значения (1,4-1,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181tk. Расчет значения площади поверхности, освобожденной от покрытия, S ведут по формуле:

S=kспособ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181tk,

где k - эмпирический коэффициент пропорциональности.

В случае если через 50-70 с от начала обработки напряжение u не достигает значения (0,5-0,6)способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, процесс электролитно-плазменного удаления покрытия останавливают, так как покрытие удаляться не будет.

Существо способа поясняется чертежом, на котором показано изменение в ходе обработки площади поверхности, освобожденной от покрытия, S и соответствующая кривая динамики действующего значения напряжения на выходе полосового фильтра u. На чертеже видно качественное отличие вида кривой напряжения u при обработке в условиях, близких к оптимальным для удаления покрытия (см. чертеж, а) и при обработке в неоптимальных условиях, когда покрытие не удаляется (см. чертеж, б). На чертеже (а) виден временный спад напряжения u с длительностью tk. Момент времени tk соответствует началу интенсивного освобождения поверхности, которое происходит с постоянной скоростью.

Приведенное поведение кривых объясняется связью закономерностей функционирования парогазовой оболочки и переменной составляющей тока при электролитно-плазменной обработке. Удаление покрытия в условиях, близких к оптимальным, связано с воздействием неустойчивого пленочного кипения на материал покрытия с образованием аморфных оксидов вентильных металлов материала покрытия на начальной стадии обработки в течение 20-40 с от начала обработки. Через 50-70 с парогазовая оболочка переходит в режим пузырькового кипения, в котором продолжается окисление поверхности. После полного окисления покрытия начинается его удаление, которое происходит с постоянной скоростью (см. чертеж, а). Обработка в не оптимальных для удаления покрытия условиях связана с действием режима пузырькового кипения с начала обработки, в результате чего образуются кристаллические оксиды вентильных металлов материала покрытия, которые не удаляются в данном режиме кипения (см. чертеж, б). Поскольку электрическое сопротивление кристаллических оксидов меньше сопротивления аморфных оксидов, то при наличии последних, проводимость системы будет меньше.

Наиболее ярко данный эффект проявляется в переменной составляющей тока на частотах 500-1500 Гц. Образованию аморфных оксидов соответствует область спада напряжения на выходе полосового фильтра u длительностью tk (см. чертеж, а). Возрастание напряжения связано с повышением проводимости поверхности в связи с удалением оксидного слоя. Достижение максимального значения площади поверхности, освобожденной от покрытия, зависит от длительности временного интервала tk, определяющего длительность окисления, и, соответственно площадь полностью окисленной поверхности. Образование кристаллических оксидов существенно не влияет на проводимость системы, и в случае их образования спада напряжения u не происходит, что сигнализирует о том, что покрытие не будет удаляться (см. чертеж, б).

Примеры конкретной реализации способа

Образцы из стали ЭИ-961Ш с вакуумно-плазменным покрытием из нитрида титана различной толщины обрабатывали электролитно-плазменным методом в 5% растворе сульфата аммония при различных напряжениях и начальных температурах электролита. Для определения момента окончания удаления покрытия регистрировали действующее значение напряжения u на выходе полосового фильтра с граничными частотами 500 и 1500 Гц. Определяли значение порогового напряжения u0 путем усреднения значения u в течение 30 с от начала обработки и начинали отсчет отрезков времени tk и t, если через 60 с от начала обработки напряжение u достигало значения 0,5способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, то конец отсчета времени tk устанавливали по достижении напряжением u значения 0,9способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, а момент окончания процесса определяли по достижении t значения 1,5способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181tk. Расчет значения площади поверхности, освобожденной от покрытия, S вели по формуле

S=kспособ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181tk,

где k=0,2811. В случае, если через 60 с от начала обработки напряжение u не достигало значения 0,5способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181u0, принимали решение о том, что покрытие не удалится. Также после обработки определяли реально достигнутую площадь поверхности, освобожденной от покрытия Sp. Для сравнения приведено время окончания процесса удаления покрытия, определенное с помощью способа-прототипа. Результаты приведены в таблице.

Таким образом, заявляемое изобретение позволяет упростить способ определения момента окончания процесса электролитно-плазменного удаления покрытия, повысить его информативность и имеет простое техническое исполнение.

способ определения момента окончания процесса электролитно-  плазменного удаления покрытия, патент № 2227181

Класс C25F5/00 Электролитические способы удаления металлических слоев или покрытий

способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами -  патент 2467098 (20.11.2012)
установка для удаления покрытия и способ ее эксплуатации -  патент 2460829 (10.09.2012)
способ электрохимического удаления металлического покрытия с конструктивной детали -  патент 2405070 (27.11.2010)
способ определения момента окончания процесса электролитно-плазменного удаления покрытия -  патент 2360045 (27.06.2009)
контур управления установкой удаления покрытий с деталей -  патент 2257427 (27.07.2005)
способ удаления жаростойкого металлического покрытия -  патент 2228396 (10.05.2004)
устройство и способ для удаления покрытий -  патент 2215068 (27.10.2003)
способ удаления алюминидного покрытия на основе никеля -  патент 2211261 (27.08.2003)
способ извлечения золота из золотого покрытия на подложке из меди или ее сплава -  патент 2187580 (20.08.2002)
способ электрохимической обработки игл -  патент 2176945 (20.12.2001)

Класс C25F7/00 Конструктивные элементы электролизеров или их сборка для удаления примесей из изделий электролитическим способом; уход или управление

ручной инструмент-электрод для электрохимического полирования металлов -  патент 2472874 (20.01.2013)
установка для удаления покрытия и способ ее эксплуатации -  патент 2460829 (10.09.2012)
установка электролитно-плазменной обработки -  патент 2378420 (10.01.2010)
способ и устройство для травления металлов -  патент 2375506 (10.12.2009)
способ извлечения золота из электролита для электрополировки изделий -  патент 2356958 (27.05.2009)
ручной инструмент-электрод для электрохимического полирования -  патент 2342472 (27.12.2008)
инструмент-электрод для электрохимического полирования пространственно-сложных поверхностей -  патент 2338013 (10.11.2008)
способ регенерации электролита для анодной подготовки деталей на основе железа к железнению -  патент 2334834 (27.09.2008)
установка для электролитно-плазменного полирования -  патент 2323279 (27.04.2008)
установка для электролитно-разрядной обработки -  патент 2320786 (27.03.2008)
Наверх