способ окисления сернистых соединений в газовых выбросах (варианты)

Классы МПК:B01D53/48 соединения серы
B01D53/86 каталитические способы
Автор(ы):, ,
Патентообладатель(и):Кочетков Алексей Юрьевич
Приоритеты:
подача заявки:
2002-07-22
публикация патента:

Изобретение относится к способам обработки газовых выбросов с целью окисления сернистых соединений. Обработку газов предлагается проводить абсорбционно-каталитическим способом в присутствии гетерогенного катализатора, который содержит в качестве активного компонента оксиды и/или гидрооксиды металлов переменной валентности и дополнительно модифицирующую добавку, в качестве которой используются органические основания и/или гетерополикислоты на полимерном носителе - полиэтилене или полипропилене при следующем содержании компонентов катализатора, мас.%: активный компонент 15-50, модифицирующая добавка 0,5-20, носитель остальное, или содержит в качестве активного компонента одно или несколько соединений металлов переменной валентности, дополнительно плавень - кремнесодержащее соединение, а также модифицирующую добавку - углеродсодержащий материал на носителе - глине при следующем содержании компонентов катализатора, мас.%: активный компонент 15-50, модифицирующая добавка 0,5-20, плавень 50-10, носитель остальное. Изобретение позволяет обеспечить наибольшую эффективность окисления по всем сернистым соединениям. 2 с.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Способ окисления сернистых соединений в газовых выбросах, включающий абсорбционно-каталитическую очистку в присутствии гетерогенного катализатора, отличающийся тем, что катализатор содержит в качестве активного компонента оксиды и/или гидрооксиды металлов переменной валентности и дополнительно модифицирующую добавку, в качестве которой используются органические основания и/или гетерополикислоты на полимерном носителе - полиэтилене или полипропилене при следующем содержании компонентов катализатора, мас.%:

Активный компонент 15-50

Модифицирующая добавка 0,5-20

Носитель Остальное

2. Способ окисления сернистых соединений в газовых выбросах, включающий абсорбционно-каталитическую очистку в присутствии гетерогенного катализатора, отличающийся тем, что катализатор в качестве активного компонента содержит одно или несколько соединений металлов переменной валентности, дополнительно плавень - кремнесодержащее соединение, а также модифицирующую добавку - углеродсодержащий материал на носителе - глине при следующем содержании компонентов катализатора, мас.%:

Активный компонент 15-50

Модифицирующая добавка 0,5-20

Плавень 50-10

Носитель Остальное

Описание изобретения к патенту

Изобретение относится к способам обработки газовых выбросов путем жидкофазного окисления сернистых соединений (диоксида серы, сероводорода, меркаптанов) кислородом воздуха и может быть использовано для очистки газовых выбросов и сточных вод энергетической, нефтеперерабатывающей, нефтехимической, химической и целлюлозно-бумажной отраслей промышленности.

Известно, что для очистки серосодержащих отходящих промышленных газов окислением в сернистый ангидрид сероводорода и органических соединений серы используется гетерогенный катализатор /1/.

Основным недостатком этого способа является неудовлетворительная глубина окисления сероводорода и органических соединений серы - до сернистого ангидрида. Сернистый ангидрид является трудноизвлекаемым высокотоксичным компонентом. Очистка газа от сернистого ангидрида представляет сама по себе не меньшую проблему, чем очистка от сероводорода и сероорганики.

Наиболее близким к предлагаемому способу является способ /2/ жидкофазного окисления сернистых соединений с использованием гетерогенного катализатора, который в качестве активного компонента содержит пиритный огарок и пиролюзит-руду, а также плавень, в качестве которого используется стекло, на носителе - глине, при следующем содержании компонентов, мас.%:

Пиритный огарок - 13-15

Пиролюзит-руда - 43-45

Плавень - 10-12

Глина - Остальное

Указанный способ обеспечивает окисление всех сернистых соединений, однако в связи с невысокой активностью используемого здесь катализатора степень окисления соединений серы недостаточна.

Кроме того, недостаточно высокая активность катализатора обуславливает высокий удельный расход катализатора в процессе окисления, большое время контакта газ:катализатор влечет за собой большие габариты аппаратов и повышенный расход воздуха в процессе окисления.

Для устранения указанных недостатков предлагается абсорбционно-каталитическую очистку газов проводить в присутствии гетерогенного катализатора, который в качестве активного компонента содержит оксиды и/или гидрооксиды металлов переменной валентности и дополнительно модифицирующую добавку, в качестве которой используются органические основания и/или гетерополикислоты, на полимерном носителе - полиэтилене, или полипропилене, или другом полимере, при следующем содержании компонентов катализатора, мас.%:

Активный компонент - 15-50

Модифицирующая добавка - 0,5-20

Носитель - Остальное

или в присутствии гетерогенного катализатора, который содержит в качестве активного компонента одно или несколько соединений металлов переменной валентности, дополнительно плавень - кремнесодержащее соединение, а также модифицирующую добавку - углеродсодержащий материал, на носителе - глине, при следующем содержании компонентов катализатора, мас.%:

Активный компонент - 15-50

Модифицирующая добавка - 0,5-20

Плавень - 50-10

Носитель - Остальное

Данные катализаторы обладают высокой каталитической активностью в процессе окисления всех сернистых соединений, что обусловлено составом активного компонента катализатора и наличием модифицирующей добавки. Изменение состава активного компонента катализатора и введение модифицирующей добавки в состав катализатора по сравнению со способом-прототипом позволяет повысить активность катализатора в окислительно-восстановительных процессах и придать поверхности катализатора дополнительные специфические свойства.

В то же время, введение модифицирующей добавки в состав катализатора позволяет улучшить технологию изготовления и получать гранулы необходимой формы и размера с высокими показателями механической прочности, химической и гидролитической стойкости, что дает увеличение срока службы по сравнению с прототипом в 3 раза, который составляет 5-6 лет, что позволяет снизить удельный расход катализатора и, следовательно, себестоимость очистки газовых выбросов.

Процесс обработки газов ведется при обеспечении высокоэффективного массообмена между фазами катализатор-жидкость-газ.

Процесс обработки газов осуществляется при сокращенном времени контакта газ-катализатор и сокращенном расходе воздуха.

Все это позволяет достичь следующих преимуществ, по сравнению со способом-прототипом:

- уменьшения необходимого количества гетерогенного катализатора;

- снижения удельного расхода катализатора, т.к. последний имеет более продолжительный срок службы;

- снижения времени контакта газ:катализатор;

- уменьшения габаритов аппаратов каталитического окисления;

- снижения расхода воздуха;

- и, как следствие, снижения стоимости процесса обработки.

Форма гранул гетерогенного катализатора может быть разной - шары, гранулы неправильной формы, цилиндры, кольца Рашига и т.п. Размеры гранул также могут колебаться в пределах 3-40 мм.

Создание гетерогенного катализатора, близкого к природным переносчикам молекулярного кислорода, базировалось на основе природы взаимодействия молекулы кислорода с металлоактивными центрами, особенно первого переходного ряда Мn (II), Fe (II), Со (II), Ni (II), Сu (I) в низких степенях окисления. Они способны обратимо оксигенироваться в водных растворах и имеют состав внутренней координационной сферы, аналогичный природным, и имеют состав внутренней координационной сферы, аналогичный природным активным центрам, которые способны проводить активацию координированного O2 во внутренней сфере иона металла за счет переноса электронной плотности с центрального иона на O2, в результате чего кислород приобретает свойства супероксид-иона О2 - и О2-или пероксид-иона O2 2-.

Катализаторы были синтезированы путем координационного связывания каталитически активных комплексных соединений, нерастворимых в реакционной среде, с функциональными группами полимерного носителя, играющими роль полимерного макролиганда.

В катализаторе повышение реакционной способности координированного О2 ионами металлов может сводиться либо к облегчению термодинамически выгодного четырехэлектронного переноса с проявлением полного окислительно-восстановительного потенциала реакции восстановления кислорода:

О2+4H++4e--->2H2O,

равного 1,23 В, либо к понижению энергии активации свободных триплетных молекул О2, которые переходят после координации в синглетное состояние, что облегчает реакцию с синглетными молекулами субстрата. Активирующее действие ионов переходных металлов может также быть связано с образованием моноядерных и двухядерных дикислородных комплексов, которые в значительной степени определяют активность синтезируемых катализаторов. Образовавшаяся каталитическая система обладает более высоким энергетическим уровнем, обеспечивая высокую каталитическую активность исследуемой системы в сравнительно больших интервалах температур.

Согласно результатам ИК-спектроскопии, активные центры катализатора работают в процессах окисления как переносчики электронов с окисляемого субстрата (например, S) на кислород, попеременно восстанавливаясь ионами субстрата и окисляясь молекулярным кислородом: e- e-

S-->Mn+1<-->Mn-->O2

Активные центры катализатора работают за счет собственной энергии, связанной с их валентной ненасыщенностью. В связи с этим, снижение глубины очистки сточных вод от сернистых соединений в слабокислой и кислой средах связано с более медленным процессом окисления активных центров катализатора кислородом по сравнению с процессом их восстановления ионами субстратов.

Таким образом, окисление сернистых и органических соединений осуществляется молекулярным кислородом в координационной сфере иона металла переменой валентности при изменении его валентного состояния. Причем ион металла работает как переносчик электронов с субстратов на кислород, попеременно восстанавливаясь субстратом, окисляясь молекулярным кислородом.

Следующие примеры иллюстрируют данное изобретение.

Пример 1.

Катализатор состава (мас.%):

Активный компонент - 40

Модифицирующая добавка - 10

Полимерный носитель - 55

изготовляли по следующей технологии.

Активный компонент, представляющий собой смесь оксидов и/или гидроксидов металлов переменной валентности, предварительно сушат при температуре 110oС в течение 4 часов и производят помол на шаровой мельнице в течение 2 часов до размера частиц компонентов катализатора не более 50 мкм.

Смешение компонентов и формовку гранул катализатора осуществляют на промышленном термопластаппарате для гранулирования с минимальной загрузкой смесителя 60 кг.

Смешение компонентов катализатора осуществляют в высокотемпературном смесителе, входящем в комплект термопластаппарата, при температуре плавления полимера-носителя. В смеситель загружают полимер-носитель - полиэтилен высокого давления - в количестве 30,0 кг (50%) и модифицирующую добавку в количестве 6,0 кг (10%) и смешивали при температуре 118-122oС в течение 30-35 мин. Далее, добавляют активный компонент, в количестве 24,0 кг (40,0%). Продолжают перемешивание еще 30-60 мин. После окончания перемешивания полученная масса автоматически поступает в шнековый экструдер, где, с помощью специальных фильер, формируется в виде гранул. Для исследований изготавливают образцы катализатора в виде шарообразных гранул размером 5-7 мм.

Аналогичным образом изготовляют образцы полимерных катализаторов, содержащие компоненты (активную основу, модифицирующую добавку и носитель) в различных массовых соотношениях - составы образцов представлены в табл. 1. Среди них имеются образцы, отличающиеся большим и меньшим содержанием активной основы и модифицирующей добавки, чем предусмотрено настоящим изобретением, - 1-7, 13, 14, 20, 21, 27, 28, 34, 35, 41-47.

Пример 2.

Проводят испытания механической прочности гранул, полученных по примеру 1 образцов полимерного катализатора. Для оценки механической прочности катализатора определяют прочность гранул на раздавливание по ГОСТ 473.6-77.

Результаты испытаний для образцов 1-47 представлены в табл. 1. Анализ результатов показывает, что при содержании активной основы более 50% (обр. 42-47) или модифицирующей добавки более 20% (обр. 13, 20, 27, 34, 41) наблюдается снижение прочности гранул катализатора. То есть, при введении в состав катализатора активной основы или модифицирующей добавки в количестве большем, чем предусмотрено настоящим изобретением, наблюдается снижение пластичности носителя - полиэтилена, что приводит к падению механической прочности гранул.

Пример 3. Катализатор на керамическом носителе состава, мас.%:

Активный компонент - 30,0

Плавень - 10,0

Модифицирующая добавка - 10,0

Носитель - глина - 50,0

изготовляют по следующей технологии.

Подготовка исходных веществ включает сушку при температуре 100-110oС в течение 4 часов.

Дозировку компонентов катализатора делают на технических лабораторных весах из расчета, что масса загрузки мельницы составляет 200 г:

- активный компонент (представляющий собой смесь соединений металлов переменной валентности) - 60,0 г (30,0%);

- модифицирующая добавка - 20,0 г (10,0%);

- плавень (стекло) - 20,0 г (10,0%);

- носитель (глина) - 100,0 г (50,0%).

Смешение и размол всех компонентов катализатора проводят одновременно по сухому способу в вибрационной мельнице 3 часа. Это позволяет получить материал с величиной частиц не более 50 мкм, что в значительной мере определяет конечный результат - получение после прокаливания катализатора, обладающего необходимой структурой и фазовым составом.

Полученную смесь, состоящую из активных компонентов, носителя и модифицирующей добавки, гранулируют по методу экструзионной формовки пастообразных масс. Формовочную массу получают путем смешения компонентов катализатора с затворяющей жидкостью, в качестве которой используется вода. Смешение проводят на механической мешалке в течение 60 минут. Массовая доля воды в формовочной массе - в пределах 38-42%, в зависимости от индивидуальных свойств смеси для каждого образца катализатора. Формовка гранул осуществляется с помощью экструдера с винтовым шнеком и фильерой с диаметром отверстия 5 мм. Полученный экструдат разрезается на гранулы длиной 5-7 мм.

Сушка экструдатов осуществляется при комнатной температуре на воздухе в течение 24 часов.

Термическая обработка проводится в электрических печах в условиях свободного доступа воздуха по следующему температурному графику:

- подъем температуры до 500-530oС со скоростью 120oС за 60 мин;

- выдержка при 500-530oС в течение 240 мин;

- подъем температуры до 1100oС с той же скоростью;

- выдержка при 1100oС в течение 15 мин;

- охлаждение в течение приблизительно 4 часов.

Аналогичным образом изготовляют образцы керамических катализаторов, содержащие компоненты (активную основу, модифицирующую добавку, плавень и носитель) в различных массовых соотношениях - составы образцов представлены в табл. 2. Среди них имеются образцы, отличающиеся большим и меньшим содержанием активной основы и модифицирующей добавки, чем предусмотрено настоящим изобретением, - 1-7, 13, 14, 20, 21, 27, 28, 34, 35, 41-47.

Пример 4.

Проводят испытания механической прочности гранул, полученных по примеру 3 образцов керамического катализатора. Для оценки механической прочности катализатора определяют прочность гранул на раздавливание по ГОСТ 473.6-77. Результаты испытаний для обр. 1-47 представлены в табл. 2.

Анализ результатов показывает, что при содержании активной основы более 50% (обр. 42-47) или модифицирующей добавки более 20% (обр. 13, 20, 27, 34, 41), наблюдается снижение механической прочности гранул катализатора. То есть, введение активной основы или модифицирующей добавки в количестве большем, чем предусмотрено настоящим изобретением, приводит к падению механической прочности гранул.

Пример 5.

Определение эффективности очистки газов от сернистых соединений проводят на образцах полимерного и керамического катализаторов, полученных по примерам 1 и 3 соответственно, в процессе абсорбционно-каталитической очистки от SO2, H2S, меркаптанов на реальных газовых смесях (ТЭЦ-10). При окислении по предлагаемому способу используют катализаторы, полученные в примерах 1 и 3, за исключением тех, которые были забракованы по результатам испытаний механической прочности по примерам 2 и 4.

Определение эффективности предлагаемого способа очистки газов от сернистых соединений проводят в реакторе непрерывного действия при пленочном режиме абсорбционно-каталитического процесса. Абсорбент, в качестве которого используется вода, подается в реактор сверху, газ противотоком - снизу.

Эффективность способа оценивают по степени очистки газовой смеси от соединений серы, для этого определяют концентрацию соединений в газовой смеси на входе и на выходе реактора окисления.

Результаты испытаний активности образцов полимерного катализатора представлены в табл. 1, образцов керамического катализатора - в табл. 2.

Ниже приведены параметры процесса абсорбционно-каталитического окисления оксида серы, сульфидов, меркаптанов в газе при указанных исходных концентрациях.

Концентрация, мг/дм3:

Оксид серы - 0,01-4,5

Сероводорода - 0,01-3,0

Меркаптанов - 0,01-2,5

рН абсорбента - 7,1-8,2

Температура, oС - 60-80

Давление, МПа - атмосферное

Удельный расход воздуха, дм3/дм3 - 10,5-50

Расход абсорбента, дм3/дм3 - 0,2-1,0

Время контакта газ: катализатор, с - 0,8-1,5

Отношение расхода абсорбента к расходу газа - 0,00015

Скорость газа, м/с - 0,14

Концентрация кислорода в газе, % - 10

Определение концентрации H2S и меркаптанов производят потенциометрическим методом по ГОСТ 22985-75, SO2 - по /3/.

Анализ результатов испытаний активности образцов показывает, что все образцы полимерного и керамических катализаторов с содержанием активной основы 15-50% и модифицирующей добавки 0,5-20% имеют активность в процессе окисления оксида серы - 99,9%, сероводорода - не менее 99,7%, меркаптанов - не менее 99,9%. Причем образцы керамических катализаторов отличаются большей активностью по сравнению с образцами полимерных катализаторов того же состава.

При снижении количества активного компонента (менее 15%) и модифицирующей добавки (менее 0,5%) отмечается снижение активности образцов по всем компонентам ниже указанного уровня - обр. 1-5, 7, 14, 21, 28, 35, 42 - как для полимерных, так и для керамических катализаторов.

Таким образом, предлагаемый способ окисления сернистых соединений в газах, который осуществляется в присутствии гетерогенных катализаторов на полимерном или керамическом носителе, обеспечивает наибольшую эффективность окисления по всем сернистым соединениям - оксиду серы, сероводороду, меркаптанам, из всех известных аналогичных способов очистки.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. SU, патент 1240343 (FR), МКИ4 В 01 J 23/78, 21/06; В 01 D 53/36.

2. SU, патент 2089287 (FR), МПК6 В 01 J 23/86, 21/06; В 01 I 53/86.

3. Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. - Л.: Гидрометеоиздат, 1987. - 268 с.

Класс B01D53/48 соединения серы

способ очистки углеводородных газов -  патент 2509598 (20.03.2014)
способ комплексной подготовки углеводородного газа -  патент 2509597 (20.03.2014)
способ и установка очистки газов, образующихся при горении, содержащих оксиды азота -  патент 2501596 (20.12.2013)
способ сжигания ртутьсодержащего топлива (варианты), способ снижения количества выброса ртути, способ сжигания угля с уменьшенным уровнем выброса вредных элементов в окружающую среду, способ уменьшения содержания ртути в дымовых газах -  патент 2494793 (10.10.2013)
способ очистки серосодержащих дымовых газов -  патент 2457892 (10.08.2012)
комплексный реагент для очистки жидких и газообразных сред от сероводорода и меркаптанов со свойствами дезинфицирующего средства -  патент 2453582 (20.06.2012)
способ очистки углеводородных фракций от серосодержащих соединений -  патент 2453359 (20.06.2012)
адсорбент десульфуризатор для жидких фаз -  патент 2448771 (27.04.2012)
катализатор на углеродной основе для десульфуризации дымовых газов, и способ его получения, и его использование для удаления ртути в дымовых газах -  патент 2447936 (20.04.2012)
способ удаления сернистых соединений и диоксида углерода из газового потока -  патент 2429899 (27.09.2011)

Класс B01D53/86 каталитические способы

модульная установка очистки воздуха от газовых выбросов промышленных предприятий -  патент 2529218 (27.09.2014)
способ непрерывного удаления сернистого водорода из потока газа -  патент 2527991 (10.09.2014)
сотовый элемент с многоступенчатым нагревом -  патент 2525990 (20.08.2014)
металлический слой с антидиффузионными структурами и металлический сотовый элемент с по меньшей мере одним таким металлическим слоем -  патент 2523514 (20.07.2014)
способ очистки газа от сероводорода -  патент 2520554 (27.06.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
способ и каталитическая система для восстановления оксидов азота до азота в отработанном газе и применение каталитической системы -  патент 2516752 (20.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
способ получения серы -  патент 2508247 (27.02.2014)
фильтр для улавливания твердых частиц с гидролизующим покрытием -  патент 2506987 (20.02.2014)
Наверх