способ извлечения платины и палладия из материалов с пористой основой

Классы МПК:C22B11/00 Получение благородных металлов
B01J23/96 катализаторов, содержащих металлы, оксиды или гидроксиды благородных металлов
Автор(ы):,
Патентообладатель(и):Институт неорганической химии СО РАН
Приоритеты:
подача заявки:
2002-01-21
публикация патента:

Изобретение относится к гидрометаллургии платиновых металлов. Способ извлечения платины и палладия из отработанных катализаторов с различного типа основами включает перевод их в водорастворимое состояние окислительными смесями. При этом образующиеся комплексные ионы платиновых металлов в высших степенях окисления путем действия восстановителей переводят в низшие, полученный раствор отделяют от твердого остатка и извлекают металлы известными способами. Восстановление проводят раствором оксалата натрия или сульфатом железа (II). Технический результат - увеличение содержания платины и палладия в растворе и повышение степени их извлечения. 1 з.п.ф-лы.

Формула изобретения

1. Способ извлечения платины и палладия из отработанных катализаторов с различного типа основами, включающий перевод их в раствор обработкой окислительными смесями и выделение из раствора платины и палладия, отличающийся тем, что образующиеся при переводе в раствор комплексные ионы платины и палладия в высших степенях окисления переводят в низшие путем действия восстановителей, полученный раствор отделяют от твердого остатка и извлекают из него платину и палладий.

2. Способ по п.1, отличающийся тем, что в качестве восстановителей используют раствор оксалата натрия или сульфат железа (II).

Описание изобретения к патенту

Изобретение относится к металлургии платиновых металлов и может быть внедрено на специализированных предприятиях, перерабатывающих вторичное сырье, каким являются дезактивированные катализаторы, а также аффинажных заводах, используемых первичные платиносодержащие концентраты и полупродукты его предела.

В литературе описано множество способов переработки одного из самых емких по содержанию платиноидов техногенного сырья, каким является большая номенклатура катализаторов различного предназначения. По объему их производства это, в первую очередь, катализаторы нефтехимических предприятий, основного органического и неорганического синтезов, искусственного каучука, систем газоочистки различных производств, в том числе, нейтрализаторов автомобильных выбросов и т.д.

Большой перечень развивающихся каталитических процессов диктует расширение типов катализаторов. Это приводит не только к изменению состава каталитических металлов или их композиций, но и изменению химических форм основ используемых катализаторов, которые постоянно расширяются. Типичными видами носителей гетерогенных катализаторов являются оксиды алюминия в способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060- и способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060-модификациях, алюмосиликаты, различные шпинели, цеолиты, пемзы, модифицированные углеродные композиции и т.п. Очевидно, что чрезвычайно трудно создать универсальный способ переработки всей гаммы существующих катализаторов. Это объясняется двумя главными причинами. Первая группа способов, основанных на принципе перевода носителя в растворимое состояние различными приемами, например кислотным или щелочным (патент России 2138568 от 02.09.98, патент России 2124572 от 10.01.99), имеет ограничение работы лишь с катализаторами на основе из способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060-Аl2О3. Однако в процессе эксплуатации катализатора риформинга в нем постоянно накапливается существенная доля Аl2O3 в способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060-модификации (до 20-40%) из-за часто проводимых высокотемпературных процедур "раскоксовывания". Эта доля катализатора, имеющая заметное количество оксида алюминия другой упорной к вскрытию формы, капсулирует благородный металл и перейдет в большой по объему нерастворимый осадок. Желаемого при этом высокого коэффициента концентрирования не произойдет. Вторая группа способов, использующих различные окислительные среды с целью перевода платиновых металлов в раствор с отделением от основы (патент России 2116362 от 01.04.97 - прототип), также имеет существенный недостаток, связанный с трудностью, а иногда невозможностью полного извлечения металлов. Это связано с общей проблемой более полного перевода металлов в раствор в присутствии большого количества нерастворимой основы с высокой удельной поверхностью, достигающей величины 120-140 м2/г.

Техническим результатом изобретения является увеличение содержания платины и палладия в растворе и повышение степени их извлечения.

Технический результат достигается тем, что в способе извлечения платины и палладия из отработанных катализаторов с различного типа основами, включающем перевод их в раствор обработкой окислительными смесями и выделение из раствора платины и палладия, при этом образующиеся при переводе в раствор комплексные ионы платины и палладия в высших степенях окисления переводят в низшие путем действия восстановителей, полученный раствор отделяют от твердого остатка и извлекают из него платину и палладий, при этом в качестве восстановителей используют раствор оксалата натрия или сульфата железа (II).

Отличительными признаками изобретения являются перевод комплексных ионов платины и палладия из высших степеней окисления в низшие путем действия восстановителей, использование в качестве восстановителей оксалата натрия или сульфата железа (II).

На первом этапе создания унифицированной технологии переработки катализаторов на различных основах необходимо провести стадию перевода платиноидов в водорастворимое состояние. Это достигается в процессе их окисления широким набором реагентов, работа с которыми наилучшим образом адаптирована к конкретному производству. Важно лишь учесть химическую индивидуальность благородного металла, экологическую безопасность и экономическую эффективность применяемых реагентов. В гидрометаллургическом варианте - это концентрированные растворы азотной кислоты, царсководочная смесь, хлоринация элементным хлором, другими хлорирующими композициями и т.д.

Другая область применения заявляемого способа заключается в возможности его использования с целью извлечения платиноидов с поверхности гидратных осадков, образующихся на стадии очистки платиновых металлов, а также переработки неорганических сорбентов, применяемых в качестве наполнителей запорных колонн сливных растворов аффинажа, там, где решается проблема уменьшения содержания благородных металлов, удерживаемых на поверхности гидратированных окисей.

Новизна предлагаемого способа заключается в проведении дальнейших операций, способствующих смещению равновесия процессов сорбции комплексных ионов платиноидов на развитую поверхность основы и их десорбции с переходом в раствор. Смещение равновесия процесса сорбции может осуществляться принципиально двумя методами. По первому этого можно добиться проведением многократных промывок и последующих фильтраций. При этом объем новой партии растворителя быстро насыщается до равновесия солями платиновых металлов и его приходится обновлять. Однако введение все новых порций раствора приводит, в конечном итоге, к получению "разубоженных" растворов большого объема, что влечет за собой сложность их дальнейшей переработки. А главная задача - уменьшение остаточного содержания драгметаллов на катализаторе до уровня их концентрации намного меньше, чем в природном сырье, не решается.

Второй путь, который составляет сущность предлагаемого способа, состоит в изменении химической формы сорбированного комплексного иона благородного металла с целью смещения равновесия в пользу раствора. Научным обоснованием такой возможности являются экспериментально установленные факты зависимости экстрагируемости в органическую фазу комплексных ионов одного и того же центрального атома с разным лигандным окружением. Например, константы экстракции пар ионов вида [PtCl6]2- и [PtCl4]2-, [PdC16]2- и [PdCl4]2- различаются, как минимум, в тысячу раз, имея меньшее значение для Рt(II) и Рd(II). Этот эффект связывается с увеличением энергии гидратации комплексных ионов металлов в низшем зарядовом состоянии центрального атома из-за меньшего геометрического размера и возможности координации молекул воды по третьей координате. Опытные данные по анионообменной экстракции координационных соединений с различными лигандами и расчеты энергии гидратации однозначно указывают на резкое увеличение энергии гидратации у ионов с меньшей степенью окисления центрального атома. Иными словами, необходимо изменить химическую форму нахождения платинового металла в растворе таким образом, чтобы она обладала максимально возможной в конкретных условиях энтальпий гидратации, поскольку основной вклад в энергетику процесса вносит сольватационная составляющая.

В доступной нам научной и патентной литературе мы не нашли упоминаний об использовании подобного приема в целях более полного извлечения металлов. Имеются лишь указания на регулирование степени окисления платиновых металлов с целью улучшения экстракционной селективности при групповом их разделении.

На основании изложенного выше следует, что существо способа заключается в количественном переводе хлорокомплексов, например Pt и (или) Pd из высшей степени окисления в низшую, что позволяет увеличить содержание платины и палладия в растворе и, в конечном счете, приводит к высокому уровню извлечения металлов. Такие операции, связанные с изменением степени окисления комплексных платиновых металлов, часто проводятся на аффинажных предприятиях, но только с целью разделения, например, Pt и Ir и характеризуются высокой степенью освоенности.

Пример 1. 1000 г отработанного катализатора риформинга АП-64, содержащего в мас.%: Pt - 0,62, углеродсодержащих отложений - 2,8, оксида кремния - 1,6, серы - 0,9 на основе способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060-Аl2О3, помещают в титановый стакан и заливают раствором соляной кислоты (1:5) объемом 1000 мл и нагревают до температуры кипения. После этого в раствор порционно вводят 25 мл конц. азотной кислоты и нагрев продолжают в течение 0,5 часа. Охлажденный раствор выщелачивания сливают декантацией. Затем вновь добавляют 600 мл исходной соляной кислоты, доводят температуру до 80oС и проводят денитрацию 10-15 мл этилового спирта. После отгонки окислов азота в реакционную смесь добавляют 12 г оксалата натрия и нагрев продолжают в течение 1 часа. Охлажденный раствор вновь декантируют, переносят на фильтр и промывают 200 мл 5%-ного раствора оксалата натрия и 400 мл воды под вакуумом. Декантат и промывные воды объединяют и выделяют платину осаждением черни водным раствором гидрата-гидразина. Последующую ее очистку проводят известными способами. Остаточное содержание платины в нерастворимом остатке, определенное химико-спектральным анализом, составляет 0,003 мас.%. Степень извлечения платины находится на уровне 99,6%.

Пример 2. Навеску катализатора газоочистки от окислов азота марки АПК-2 с исходным содержанием палладия 1,98 мас.%, нанесенного на гранулы оксида алюминия в способ извлечения платины и палладия из материалов с   пористой основой, патент № 2221060-модификации в количестве 1200 г, помещают в титановый стакан и заливают 800 мл 20%-ного раствора гипохлорита натрия. Раствор нагревают и по частям вносят 250 мл конц. соляной кислоты, после чего продолжают нагрев еще в течение 1:2 часов. За это время происходит восстановительный гидролиз (в качестве восстановителя выступают молекулы воды) хлорокомплекса Pd(IV) до Рd(II). Последующее выделение и очистку палладия проводят известными способами. С учетом безвозвратных потерь палладия с фильтратом в концентрации <1 мкг/мл и остаточного содержания в катализаторе 0,001 мас.% сквозное извлечение палладия близко к 99,8%.

Пример 3. 600 г дезактивированного катализатора ИМ-22104, содержащего 0,4% платины, нанесенной на цинк-алюминиевую шпинель, помещают во фторопластовый реактор, обрабатывают смесью 500 мл 2 М соляной кислоты и 50 мл 40%-ной HF. Пульпу нагревают до температуры 80oС и 1,5 часа пропускают газообразный хлор с расходом 16 л/ч. После отключения хлора проводят его дегазацию, барботируя воздухом при нагревании в течение 0,5 часа. К полученному раствору порционно добавляют 10 мл раствора FeSO4 с концентрацией 1 М. Выделение платины проводят по условиям примера 1. Количество извлеченной платины составляет 99,2% от ее исходного содержания.

Таким образом, внедрение предложенного способа в технологическую практику не требует изменения существующего оборудования, применения дорогих или дефицитных реагентов и может быть легко адаптировано к любому из действующих производств.

Класс C22B11/00 Получение благородных металлов

способ переработки сульфидного сырья, содержащего драгоценные металлы -  патент 2528300 (10.09.2014)
способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
устройство для выщелачивания -  патент 2526350 (20.08.2014)
способ переработки золотосодержащих неорганических материалов, включая переработку ювелирного лома и рафинирование золота -  патент 2525959 (20.08.2014)
способ извлечения тонкодисперсного золота из глинистых отложений -  патент 2525193 (10.08.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра -  патент 2524038 (27.07.2014)
способ извлечения серебра из щелочных цианистых растворов -  патент 2523062 (20.07.2014)
способ извлечения золота из руд и концентратов -  патент 2522921 (20.07.2014)
способ переработки электронного лома -  патент 2521766 (10.07.2014)

Класс B01J23/96 катализаторов, содержащих металлы, оксиды или гидроксиды благородных металлов

способ переработки палладиевых отработанных катализаторов -  патент 2493275 (20.09.2013)
способ переработки дезактивированных катализаторов на носителях из оксида алюминия, содержащих металлы платиновой группы и рений -  патент 2490342 (20.08.2013)
способ регенерации содержащего рутений или соединения рутения катализатора, отравленного серой в виде сернистых соединений -  патент 2486008 (27.06.2013)
очищающий от дисперсных частиц материал, фильтр-катализатор для очистки от дисперсных частиц с использованием очищающего от дисперсных частиц материала и способ регенерирования фильтра-катализатора для очистки от дисперсных частиц -  патент 2468862 (10.12.2012)
способ регенерации автомобильных катализаторов -  патент 2464088 (20.10.2012)
способ регенерации слоя катализатора, деактивированного при проведении гетерогенно-катализируемого частичного дегидрирования углеводорода -  патент 2456075 (20.07.2012)
катализатор для очистки выхлопных газов, способ регенерации такого катализатора, а также устройство и способ очистки выхлопных газов при использовании данного катализатора -  патент 2395341 (27.07.2010)
частица металлоксидного носителя катализатора и катализатор очистки отходящего газа -  патент 2392049 (20.06.2010)
способ восстановления платинорениевого катализатора риформинга -  патент 2370315 (20.10.2009)
способ и устройство для переработки измельченного скрапа отработанных автомобильных катализаторов -  патент 2364638 (20.08.2009)
Наверх