малоактивируемый радиационностойкий сварочный материал

Классы МПК:B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 
C22C38/60 содержащие свинец, селен, теллур или сурьму или более 0,04% серы по массе
Автор(ы):, , , , , , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие Центральный научно-исследовательский институт конструкционных материалов "Прометей"
Приоритеты:
подача заявки:
2002-01-31
публикация патента:

Изобретение может быть использовано в ядерной энергетике для выполнения сварных соединений корпусов реакторов из малоактивируемой радиационно стойкой стали. Сварочная проволока содержит элементы в следующем соотношении, мас. %: углерод 0,05-0,10, кремний 0,15-0,30, марганец 0,7-1,1, хром 2,5-3,5, ванадий 0,15-0,25, вольфрам 1,2-2,0, молибден 0,005-0,05, никель 0,005-0,05, кобальт 0,005-0,02, медь 0,03-0,10, алюминий 0,01-0,05, ниобий 0,005-0,05, титан 0,05-0,10, азот 0,01-0,015, кислород 0,005-0,01, сера 0,006-0,01, фосфор 0,006-0,01, мышьяк 0,005-0,01, олово 0,001-0,005, сурьма 0,001-0,005, кальций 0,005-0,05, железо - остальное. Регламентировано соотношение вольфрама, титана, кальция и кислорода. Сварочный материал обладает пониженным уровнем наведенной активности и более быстрым ее спадом после нейтронной экспозиции, а также более высоким сопротивлением хрупкому разрушению металла шва. 3 з.п. ф-лы, 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Малоактивируемый радиационно стойкий сварочный материал, содержащий углерод, кремний, марганец, хром, молибден, ванадий, титан, никель, ниобий, медь, мышьяк, олово, сурьму, серу, фосфор и железо, отличающийся тем, что он дополнительно содержит вольфрам, кальций, кобальт, алюминий, кислород и азот при следующем содержании компонентов, мас. %:

Углерод - 0,05 - 0,10

Кремний - 0,15 - 0,30

Марганец - 0,7 - 1,1

Хром - 2,5 - 3,0

Ванадий - 0,15 - 0,25

Вольфрам - 1,2 - 2,0

Молибден - 0,005 - 0,05

Никель - 0,005 - 0,05

Кобальт - 0,005 - 0,02

Медь - 0,03 - 0,10

Алюминий - 0,01 - 0,05

Ниобий - 0,005 - 0,05

Титан - 0,05 - 0,10

Азот - 0,01 - 0,015

Кислород - 0,005 - 0,01

Сера - 0,006 - 0,01

Фосфор - 0,006 - 0,01

Мышьяк - 0,005 - 0,01

Олово - 0,001 - 0,005

Сурьма - 0,001 - 0,005

Кальций - 0,005 - 0,05

Железо - Остальное

2. Малоактивируемый радиационно стойкий сварочный материал по п. 1, отличающийся тем, что отношение

малоактивируемый радиационностойкий сварочный материал, патент № 2212323

составляет 12,2-17,0.

3. Малоактивируемый радиационно стойкий сварочный материал по п. 1, отличающийся тем, что суммарное содержание Ni, Mo, Nb, Сu, Со составляет не более 0,27.

4. Малоактивируемый радиационно стойкий сварочный материал по п. 1, отличающийся тем, что суммарное содержание As, Sb, Sn составляет не более 0,02.

Описание изобретения к патенту

Изобретение относится к области производства сварочных материалов, используемых в ядерной энергетике, в частности для выполнения сварных соединений корпусов реакторов из малоактивируемой радиационностойкой стали марки 15Х2В2ФА [1].

В отечественной энергетической промышленности для сварки стали марки 15Х2МФА широко используется сварочная проволока марки Св-10ХМФТУ [2], содержащая, мас.%:

Углерод - 0,07 - 0,12

Кремний - 0,17 - 0,35

Марганец - 0,4 - 0,7

Хром - 1,4 - 1,8

Ванадий - 0,20 - 0,35

Молибден - 0,4 - 0,6

Никель - Не более 0,3

Титан - 0,05 - 0,12

Сера - Не более 0,010

Фосфор - Не более 0,012

Медь - Не более 0,1

Азот - Не более 0,012

Железо - Остальное

Применение указанной сварочной проволоки при выполнении автоматической сварки под флюсом марки АН-42 или ручной дуговой сварки электродами на базе с указанной маркой сварочной проволоки обеспечивает высокие показатели прочностных и пластических характеристик металла шва после термической обработки. Однако в результате нейтронного облучения металл шва, выполненный указанным сварочным материалом, обладает высоким уровнем наведенной радиоактивности и длительным спадом ее после нейтронной экспозиции. Кроме того, металл шва имеет критическую температуру хрупкости выше критической температуры хрупкости малоактивируемого основного металла и составляет малоактивируемый радиационностойкий сварочный материал, патент № 221232320oС.

Наиболее близкой к заявляемой композиции по назначению и составу является сварочная проволока марки OK Autrod 13.20 SC [3], содержащая, мас.%:

Углерод - 0,096

Кремний - 0,15

Марганец - 0,6

Хром - 2,32

Ванадий - 0,008

Молибден - 1,04

Никель - 0,05

Олово - 0,006

Сурьма - 0,001

Титан - 0,002

Сера - 0,004

Фосфор - 0,006

Медь - 0,21

Ниобий - 0,006

Мышьяк - 0,005

Железо - Остальное

Основным недостатком указанных сварочных материалов является высокая активируемость металла шва в поле нейтронного излучения за счет ядерных реакций на Ni, Мо, Сu, Nb и др. элементах с образованием долгоживущих радиоактивных изотопов, являющихся источником жесткого малоактивируемый радиационностойкий сварочный материал, патент № 2212323-излучения. Это приводит к ухудшению радиационной обстановки, делает чрезвычайно трудоемким проведение ремонтных работ сварных швов в процессе эксплуатации реакторного оборудования, создает серьезные проблемы при захоронении и утилизации отработавших свой срок сварных крупногабаритных конструкций атомной энергетики.

Применение зарубежного сварочного материала при выполнении автоматической сварки под флюсом марки ОК 10.63 обеспечивает высокие прочностные характеристики, высокое сопротивление хрупкому разрушению металла шва до облучения [3]. Однако металл указанного состава обладает высоким уровнем наведенной радиоактивности и низким спадом ее после нейтронной экспозиции.

Задачей изобретения является создание сварочного материала, обладающего пониженным уровнем наведенной активности и более быстрым ее спадом после нейтронной экспозиции, а также более высоким сопротивлением хрупкому разрушению металла шва, в том числе после нейтронного облучения при сохранении высокого уровня прочностных и пластических свойств.

Поставленная задача достигается тем, что сварочный материал, содержащий углерод, кремний, марганец, хром, молибден, медь, ниобий, никель, ванадий, титан серу, фосфор, мышьяк, олово, сурьму и железо дополнительно содержит вольфрам, кальций, кобальт, алюминий, кислород, азот при следующем соотношении компонентов, мас.%:

Углерод - 0,05 - 0,10

Кремний - 0,15 - 0,30

Марганец - 0,7 - 1,1

Хром - 2,5 - 3,0

Ванадий - 0,15 - 0,25

Вольфрам - 1,2 - 2,0

Молибден - 0,005 - 0,05

Никель - 0,005 - 0,05

Кобальт - 0,005 - 0,02

Медь - 0,03 - 0,10

Алюминий - 0,01 - 0,05

Ниобий - 0,005 - 0,05

Титан - 0,05 - 0,10

Азот - 0,01 - 0,015

Кислород - 0,005 - 0,01

Сера - 0,006 - 0,01

Фосфор - 0,006 - 0,01

Мышьяк - 0,005 - 0,01

Олово - 0,001 - 0,005

Сурьма - 0,001 - 0,005

Кальций - 0,005 - 0,05

Железо - Остальное

При суммарном содержании Ni, Mo, Nb, Сu, Со не более 0,27, суммарном содержании As, Sb, Sn, не более 0,02, отношение малоактивируемый радиационностойкий сварочный материал, патент № 2212323

За счет введения в сварочный материал вольфрама в пределах 1,2-2,0% при одновременном регламентировании суммарного содержания никеля, ниобия, молибдена, меди и кобальта до 0,27 массовых процентов достигается уменьшение активируемости под действием нейтронного облучения и увеличивается скорость спада наведенной активности.

При введении в сварочный материал вольфрама и кальция, увеличении содержания титана и регламентировании содержания кислорода при суммарном содержании указанных элементов малоактивируемый радиационностойкий сварочный материал, патент № 2212323 в пределах от 12,2 до 17,0 обеспечивается резкое повышение сопротивления хрупкому разрушению металла шва, сдвиг критической температуры хрупкости в область отрицательных температур.

Введение вольфрама в пределах 1,2-2,0% обеспечивает металлу шва меньшую активируемость под действием нейтронного облучения и более быстрый ее спад во времени после окончания нейтронной экспозиции благодаря меньшему эффективному сечению взаимодействия нейтронов с ядрами вольфрама и меньшему периоду полураспада образовавшихся под облучением изотопов вольфрама, соответственно.

При этом не снижается уровень механических свойств металла шва при использовании заявляемого сварочного материала в сравнении с известным (см. табл. 3). Нижний предел содержания вольфрама определяется необходимостью обеспечения требуемых прочностных характеристик металла шва. Ограничение вольфрама по верхнему пределу обусловлено необходимостью обеспечения высокого сопротивления хрупкому разрушению металла шва.

Увеличение содержания сильного раскислителя металла - титана - в сварочной проволоке до 0,10% способствует повышению сопротивления хрупкому разрушению металла шва за счет связывания при сварке в расплавленном металле кислорода и измельчению зерна в структуре.

Регламентированное содержание кислорода в пределах (0,005-0,01)%, азота (0,01-0,015)%, а также алюминия (0,01-0,05)% способствует повышению сопротивления хрупкому разрушению металла шва за счет снижения содержания в нем неметаллических включений типа окислов и нитридов и др.

Введение в сварочный материал кальция до 0,05% способствует глобулизации карбидов, обеспечивая повышение сопротивления хрупкому разрушению металла шва.

Повышение верхнего предела содержания в проволоке хрома до 3,0% необходимо с целью обеспечения требуемых прочностных характеристик и стойкости против теплового охрупчивания металла шва в процессе эксплуатации за счет оптимального содержания хрома в металле шва, с учетом выполнения многопроходных швов сечением до 200-250 мм корпусов реакторов автоматической сваркой проволокой под флюсом.

Ограничение содержания в проволоке меди до 0,10% обеспечивает более высокую радиационную стойкость металла шва в процессе эксплуатации.

В ЦНИИ КМ "Прометей" произведена выплавка в 100-килограммовой открытой индукционной печи трех плавок стали для сварочной проволоки заявляемого состава. Выплавка стали производилась на чистых шихтовых материалах известного состава с промывкой печи до требуемой чистоты металла по содержанию никеля, молибдена, ниобия, меди, серы и фосфора. Разливку стали производили в слитки весом 25 кг.

Слитки после обдирки проковывали на заготовки размером 16малоактивируемый радиационностойкий сварочный материал, патент № 221232316 мм с дальнейшим изготовлением катанки диаметром 6 мм и волочением ее на сварочную проволоку диаметром 4 мм.

Для исследования свойств металла шва изготавливали 3 партии электродов (марки 48Н-38Ф) на базе выплавленной сварочной проволоки с использованием традиционного покрытия электродов типа УОНИИ 13/45А.

Образцы для исследования изготавливали из технологических сварных проб, выполненных с использованием указанных электродов. Наплавку производили ручным дуговым способом электродами диаметром 4 мм на сварочном токе Iсв= 140-160 А.

Для исследования механических свойств металла шва изготавливали образцы на статическое растяжение диаметром 3 мм и длиной 15 мм, а также призматические образцы размером малоактивируемый радиационностойкий сварочный материал, патент № 22123235малоактивируемый радиационностойкий сварочный материал, патент № 221232327,5 мм с острым надрезом для испытаний на ударный изгиб.

В качестве известного сварочного материала была выбрана зарубежная проволока марки ОК 13,20 и сварочные электроды на ее основе (партия 4).

Нейтронное облучение образцов заявляемого и известного сварочного материала производилось в активной зоне исследовательского реактора при температуре 270малоактивируемый радиационностойкий сварочный материал, патент № 221232310oС флюенсом 1,4малоактивируемый радиационностойкий сварочный материал, патент № 22123231024 нейтр/м2малоактивируемый радиационностойкий сварочный материал, патент № 22123230,5 МэВ). Испытание на растяжение проводились на установке УМД-10 на воздухе при скорости деформации 3малоактивируемый радиационностойкий сварочный материал, патент № 221232310-3 с-1. Ударные испытания проводились на копре типа 2121КМ-0,5 с максимальной энергией удара 50 Дж.

Химический состав заявляемого и известного сварочного материала приведен в табл. 1, результаты расчета кинетики спада наведенной активности в рассматриваемых материалах - в табл. 2 и результаты испытаний механических свойств - в табл. 3.

Данные расчета кинетики спада наведенной активности в сварочных материалах после предполагаемого облучения в реакторе типа ВВЭР-1000 в течение 30 лет и последующей выдержки до 100 лет свидетельствуют о преимуществе заявляемого сварочного материала, особенно заметной после выдержки свыше 10 лет (табл. 2).

Результаты испытаний механических свойств (табл. 3) подтверждают преимущества описываемого сварочного материала перед известным в отношении меньшей склонности к радиационному охрупчиванию металла шва, определяемому меньшей величиной сдвига критической температуры хрупкости после облучения.

Ожидаемый технико-экономический эффект, обусловленный более быстрым спадом наведенной активности и меньшей склонностью к радиационному охрупчиванию, выразится в увеличении надежности, безопасной эксплуатации и срока службы сварных соединений, а также в повышении экологической чистоты за счет снижения загрязнения окружающей среды в период эксплуатации и после ее завершения атомных энергетических установок нового поколения из малоактивируемых конструкционных материалов.

ЛИТЕРАТУРА

1. Патент РФ 2135623.

2. ПНАЭГ-7-009-89 "Оборудование и трубопроводы энергетических установок. Сварка и наплавка. Основные положения".

3. Каталог ESAB (Сертификат качества).

Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 

быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
сварочная проволока -  патент 2511382 (10.04.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
сварочная проволока из нержавеющей стали с флюсовым сердечником для сварки оцинкованного стального листа и способ дуговой сварки оцинкованного стального листа с применением указанной сварочной проволоки -  патент 2482947 (27.05.2013)
сварочная проволока из низкоуглеродистой легированной стали -  патент 2477334 (10.03.2013)
способ нанесения покрытия на поверхность деталей с помощью электроконтактной сварки с использованием порошкового присадочного материала, содержащего железный порошок, и присадочный материал для его осуществления -  патент 2473413 (27.01.2013)
твердый припой -  патент 2469829 (20.12.2012)

Класс C22C38/60 содержащие свинец, селен, теллур или сурьму или более 0,04% серы по массе

листовая сталь для горячего штампования и способ изготовления горячештампованной детали с использованием листовой стали для горячего штампования -  патент 2520847 (27.06.2014)
способ производства текстурованных листов из электротехнической стали -  патент 2519691 (20.06.2014)
коррозионно-стойкая легированная нейтронно-поглощающая сталь для изготовления шестигранных чехловых труб для уплотненного хранения в бассейнах выдержки и транспортировки ядерного топлива -  патент 2519064 (10.06.2014)
способ производства текстурованного трасформаторного листа из тонкого сляба -  патент 2515978 (20.05.2014)
способ производства текстурированной магнитной листовой стали -  патент 2508411 (27.02.2014)
шестерня и способ ее изготовления -  патент 2507298 (20.02.2014)
низколегированная конструкционная сталь с повышенной прочностью -  патент 2505618 (27.01.2014)
автоматные висмутсодержащие стали -  патент 2503737 (10.01.2014)
способ изготовления листа электротехнической стали с ориентированной зеренной структурой -  патент 2503728 (10.01.2014)
способ изготовления листа текстурированной электротехнической стали, лист текстурированной электротехнической стали для ленточного сердечника и ленточный сердечник -  патент 2502810 (27.12.2013)
Наверх