способ определения концентрации легирующей примеси в полупроводниках после нейтронно-трансмутационного легирования
Классы МПК: | C30B31/20 легирование путем облучения электромагнитными волнами или облучения частицами |
Автор(ы): | Лебедев В.И., Черников О.Г., Горбунов Е.К., Шмаков Л.В., Козык М.П., Григорьев К.В., Фурсов А.Н. |
Патентообладатель(и): | Государственное предприятие Ленинградская атомная электростанция им. В.И.Ленина |
Приоритеты: |
подача заявки:
2002-07-08 публикация патента:
20.07.2003 |
Изобретение относится к области радиационных технологий, преимущественно к нейтронно-трансмутационному легированию (НТЛ) полупроводников, и может быть использовано для определения концентрации легирующей примеси (т.е. стабильного дочернего изотопа), образующейся в результате облучения полупроводникового материала тепловыми нейтронами в ядерном реакторе с последующим радиоактивным распадом материнского изотопа, который сопровождается испусканием гамма-квантов, в частности, для НТЛ-кремния. Сущность изобретения состоит в том, что в способе определения концентрации легирующей примеси в полупроводниках после нейтронно-трансмутационного легирования, включающем облучение нейтронами слитков полупроводникового материала одновременно с контрольными образцами и выдержку их перед измерением, концентрацию легирующей примеси в облученных слитках находят, регистрируя среднюю скорость счета в пике полного поглощения гамма-квантов материнского изотопа методом гамма-спектрометрии контрольных образцов, и рассчитывают искомую концентрацию по формуле:

где n - концентрация легирующей примеси, см-3;
- константа распада материнского изотопа, с-1;
S - средняя скорость счета в пике полного поглощения гамма-квантов материнского изотопа, регистрируемая за время измерения, с-1;
t1, t2, t3 - продолжительность облучения, выдержки и измерения соответственно, с;
- абсолютная эффективность регистрации детектора для геометрии измеряемого контрольного образца, отн. ед.;
- выход гамма-квантов материнского изотопа на один акт распада, отн. ед.;
V - объем контрольного образца, см3. Гамма-спектрометр предварительно калибруют по эффективности регистрации при помощи образцовых радионуклидных источников. Контрольные образцы полупроводникового материала перед измерением средней скорости счета выдерживают в течение 20-25 ч от момента окончания облучения, а после измерений и снижения их наведенной активности до уровня естественного радиационного фона повторно используют при следующих облучениях. Изобретение позволяет повысить безопасность процесса, уменьшить количество технологических операций и трудоемкость выполнения измерений, а также с высокой точностью контролировать концентрацию одной или одновременно нескольких легирующих примесей, введенных в полупроводниковый материал при нейтронно-трансмутационном легировании. 1 з.п. ф-лы, 2 ил., 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

где n - концентрация легирующей примеси, см-3;

S - средняя скорость счета в пике полного поглощения гамма-квантов материнского изотопа, регистрируемая за время измерения, с-1;
t1, t2, t3 - продолжительность облучения, выдержки и измерения соответственно, с;


V - объем контрольного образца, см3. Гамма-спектрометр предварительно калибруют по эффективности регистрации при помощи образцовых радионуклидных источников. Контрольные образцы полупроводникового материала перед измерением средней скорости счета выдерживают в течение 20-25 ч от момента окончания облучения, а после измерений и снижения их наведенной активности до уровня естественного радиационного фона повторно используют при следующих облучениях. Изобретение позволяет повысить безопасность процесса, уменьшить количество технологических операций и трудоемкость выполнения измерений, а также с высокой точностью контролировать концентрацию одной или одновременно нескольких легирующих примесей, введенных в полупроводниковый материал при нейтронно-трансмутационном легировании. 1 з.п. ф-лы, 2 ил., 4 табл.
Формула изобретения
1. Способ определения концентрации легирующей примеси в полупроводниках после нейтронно-трансмутационного легирования, включающий облучение нейтронами слитков полупроводникового материала одновременно с контрольными образцами и выдержку их перед измерением, отличающийся тем, что концентрацию легирующей примеси в облученных слитках находят, регистрируя среднюю скорость счета в пике полного поглощения гамма-квантов материнского изотопа методом гамма-спектрометрии контрольных образцов, и рассчитывают искомую концентрацию по формуле
где n - концентрация легирующей примеси, см-3;

S - средняя скорость счета в пике полного поглощения гамма-квантов материнского изотопа, регистрируемая за время измерения, с-1;
t1, t2, t3 - продолжительность облучения, выдержки и измерения, с;


V - объем контрольного образца, см3. 2. Способ по п.1, отличающийся тем, что время выдержки контрольных образцов от окончания облучения до начала измерений средней скорости счета уменьшено до 20-25 ч, а контрольные образцы после проведения измерений и снижения их наведенной активности до уровня естественного радиационного фона повторно используют при следующих облучениях.
Описание изобретения к патенту
Предлагаемое изобретение относится к области радиационных технологий, преимущественно - к нейтронно-трансмутационному легированию (НТЛ) полупроводников, и может быть использовано для определения концентрации легирующей примеси (количества дочерних стабильных ядер), образующейся в результате облучения полупроводникового материала тепловыми нейтронами в ядерном реакторе с одновременным радиоактивным распадом материнского изотопа, который сопровождается испусканием гамма-квантов, в частности, для НТЛ кремния:
Известен способ контроля концентрации электрически активных примесей в полупроводниках, основанный на измерении эффекта Холла [1]. Недостатком этого способа является необходимость создания металлизированных контактов на образцах определенной формы, что делает невозможным выполнение оперативного технологического контроля электрически активных примесей в промышленных условиях непосредственно на кремниевых слитках. В другом способе расчета концентрации элементов, образующихся в материале в результате облучения, используют известные значения сечений активации и измеренные в конкретной зоне облучения спектральные зависимости плотности потока нейтронов от энергии [2] . Недостатком способа являются длительность и трудоемкость процедуры определения потоков и спектров нейтронов для каждого облучательного канала, обусловленные большим количеством требуемых для этого активационных детекторов и необходимостью многократных измерений каждого из них. Кроме того, способ характеризуется высокой погрешностью 15-30%, связанной с применяемыми итерационными алгоритмами и библиотеками нейтронных сечений [3, 4]. Наиболее близким аналогом является способ контроля концентрации легирующей примеси в полупроводниковом материале при НТЛ по изменению удельного электрического сопротивления (УЭС), включающий подготовку слитков и контрольных образцов, облучение их нейтронами, выдержку и отжиг перед измерением [5]. Пооперационно способ состоит из следующих этапов:
- подготовка поверхности контрольных образцов (шлифовка, травление) и измерение их УЭС перед облучением стандартным двух- или четырехзондовым методом;
- нейтронно-трансмутационное легирование слитков и соответствующих контрольных образцов в ядерном реакторе;
- длительная выдержка облученного полупроводникового материала для уменьшения наведенной активности и дезактивация поверхностных загрязнений до уровня естественного радиационного фона;
- повторное травление контрольных образцов, высокотемпературный отжиг радиационных дефектов, шлифовка поверхности и измерение УЭС после облучения;
- расчет концентрации легирующей примеси, введенной в полупроводник методом НТЛ, по формуле:

где n - концентрация легирующей примеси, см-3;
е - заряд электрона, (1,6








где n - концентрация легирующей примеси, см-3;

S - средняя скорость счета в пике полного поглощения гамма-квантов материнского изотопа, регистрируемая за время измерения, с-1;
t1, t2, t3 - продолжительность облучения, выдержки и измерения, с;


V - объем контрольного образца, см3. Гамма-спектрометр предварительно калибруют по эффективности регистрации при помощи образцовых радионуклидных источников. Среднюю скорость счета гамма-квантов материнского радионуклида в контрольных образцах измеряют через 20-25 ч по окончании облучения. Контрольные образцы после проведения измерений и снижения их наведенной активности до уровня естественного радиационного фона повторно используют при следующих облучениях. В предлагаемом способе время выдержки контрольных образцов от момента окончания облучения до начала измерений значительно уменьшено (против 5-7 сут по способу - ближайшему аналогу), что повышает скорость выполнения технологического контроля, а при промышленных облучениях на реакторе позволяет оперативно следить за стабильностью результатов легирования и корректировать процесс НТЛ по данным предыдущих облучений. Указанное время выдержки определяется допустимой максимальной загрузкой спектрометрического тракта (5









1. Павлов Л.П. Методы измерения параметров полупроводниковых материалов. М., 1987. 2. Коршунов Ф. П. , Соболев Н. А., Акулович Н.И. и др. Новые аспекты ядерного легирования полупроводников. // Вести АН БССР. Сер. физ.-мат. наук. Минск. 1991. 3. С.24-28. 3. Perey F. G. Least-squares Dosimetry Unfolding: The Programm STAYSL. Report ORNL/TM-6062 (ENDF-254). 1977. 4. Koсherov N. P., Melaughlin P.K. The International Reactor Dosimetry File [IRDF-90]. Report IAEA-NDS-141, Rev.2, IAEA, Vienna, Oct., 1993. 5. ТУ 48-4-443-83. Кремний монокристаллический в слитках, однородно-легированный фосфором, для силовой полупроводниковой техники - ближайший аналог. 6. Измерение активности радионкуклидов. Справочное пособие./Под ред. Ю. И.Тарбеева. СПб. ВНИИМ. 1997. С.236-240. 7. Панов Е.А. Практическая гамма-спектрометрия на атомных станциях. М.: Энергоатомиздат. 1990. С.56-59. 8. Там же. С.130-134. 9. Машкович В. П. , Кудрявцева А.В. Защита от ионизирующих излучений. Справочник. М.: Энергоатомиздат. 1995. С.470.
Класс C30B31/20 легирование путем облучения электромагнитными волнами или облучения частицами