верхний токоподвод к самообжигающемуся аноду алюминиевого электролизера

Классы МПК:C25C3/16 устройства для подвода электрического тока, например шины
C25C3/12 аноды
Автор(ы):,
Патентообладатель(и):Бегунов Альберт Иванович,
Бегунов Алексей Альбертович
Приоритеты:
подача заявки:
2000-12-06
публикация патента:

Изобретение относится к цветной металлургии и может быть использовано при получении алюминия в электролизерах с верхним токоподводом к самообжигающимся анодам. Токоподвод содержит стальные цилиндрические неизвлекаемые штыри. Нижняя часть штырей, равная высоте их перестановки, выполнена из жаропрочных сталей. Изобретение обеспечивает возможность работы электролизера без "вторичного анода" и снижение расхода электроэнергии благодаря уменьшению минимального расстояния от штырей до подошвы анода. 1 ил.
Рисунок 1

Формула изобретения

Верхний токоподвод к самообжигающемуся аноду алюминиевого электролизера, содержащий стальные неизвлекаемые цилиндрические штыри, отличающийся тем, что нижняя часть штырей, равная высоте их перестановки, выполнена из жаропрочных сталей.

Описание изобретения к патенту

Изобретение относится к цветной металлургии и может быть использовано при получении алюминия в электролизерах с верхним токоподводом к самообжигающимся анодам.

В известных используемых решениях применяются конусные стальные штыри, которые периодически раскручиваются и извлекаются из анода с заполнением образовавшихся каналов анодной массой и установкой в них "новых" штырей. Коксование связующего пека в каналах происходит с высокими скоростями и приводит к образованию так называемого "вторичного анода" низкого качества и с выделением больших количеств канцерогенных полиароматических соединений. (Коробов М. А., Дмитриев А.А. Самообжигающиеся аноды алюминиевых электролизеров. Металлургия, М., 1972, 207 с.

Ближайшим аналогом является электролизер по авт.св. 175242 от 21.09.1965 г. , в котором предложено использовать неизвлекаемые штыри цилиндрического сечения. Однако как в применяющихся технических решениях, так и в решении, принятом в качестве аналога, имеют место деформация и уменьшение диаметра штырей при их раскручивании, что сопровождается катастрофическим ухудшением механических и электрических характеристик контакта "штырь-анод".

Задачей изобретения является сохранение качества механического и электрического контакта штырей с анодом при их раскручивании для перестановки на новый горизонт. Техническим результатом является обеспечение возможности работы электролизера без "вторичного анода" и снижение расхода электроэнергии благодаря уменьшению минимального расстояния от штырей до подошвы анода.

Достижение указанного технического результата обеспечивается тем, что нижняя часть штырей, равная высоте их перестановки, выполнена из жаропрочных сталей.

Высота жаропрочной нижней части штырей не может быть большой с тем, чтобы не увеличивать значительно стоимость токоподвода. В то же время она и не может быть слишком малой, так как требуется обеспечить прочностные характеристики разогретых нижних концов штырей. По технологическим и конструктивным соображениям высота жаропрочной части штырей должна быть равна высоте их перестановки. При этом условии и перемещении штырей в пределах токопроводящей зоны (выше 700oС) все штыри, включая только что раскрученные и переставленные, всегда принимают на себя токовую нагрузку. Жаропрочная часть штырей не спекается с анодом, что уменьшает механические нагрузки в контакте штыря с анодом и устраняет возможности "ползучести" металла штыря при его раскручивании и перестановке.

На чертеже показан пример реализации предложенного токоподвода к аноду. Здесь: 1 - анод; 2 - штыри из углеродистой стали; 3 - части штырей из жаропрочной стали; 4 - электролит; 5 - "глухие" каналы под штырями, заполненные газовыми пробками.

При работе такого токоподвода штыри, достигшие заданного минимального расстояния от подошвы, раскручиваются и переставляются в верхнее положение без извлечения их из анода на высоту, равную высоте их жаропрочной части.

Образование отверстий под штырями при технологии обслуживания анодного хозяйства без извлечения штырей не вызывает существенного возрастания анодной плотности тока. Действительно, при использовании анода сечением 8400верхний токоподвод к самообжигающемуся аноду алюминиевого   электролизера, патент № 22074072800 мм и 72 цилиндрических штырей диаметром 138 мм сечение канала под штырем составляет 14,95верхний токоподвод к самообжигающемуся аноду алюминиевого   электролизера, патент № 220740710-3 м2 и всех каналов - 1,076 м2. "Живое сечение" анода уменьшается с 235200 до 224440 см2 в новом токоподводе, а плотность тока возрастает с ~0,659 до 0,691 А/см2 (для силы тока 155000 А). Увеличение анодной плотности тока примерно на 0,03 А/см2 по энергетическим характеристикам вполне "перекроется" снижением омических потерь напряжения в аноде за счет уменьшения среднего расстояния от концов штырей до подошвы анода. Таким образом, предложенный токоподвод может быть реализован.

Класс C25C3/16 устройства для подвода электрического тока, например шины

способ замены четырехстоячной ошиновки на трехстоячную в алюминиевом электролизере содерберга -  патент 2516415 (20.05.2014)
ошиновка электролизера для получения алюминия -  патент 2505626 (27.01.2014)
составной токоотводящий стержень -  патент 2494174 (27.09.2013)
устройство и способ замыкания накоротко одного или более электролизеров в компоновке электролизеров, предназначенных для получения алюминия -  патент 2481420 (10.05.2013)
контактный зажим электролизера с обожженными анодами -  патент 2458187 (10.08.2012)
анодный токоподвод алюминиевого электролизера -  патент 2456382 (20.07.2012)
гибкий токоведущий переходник-компенсатор -  патент 2450089 (10.05.2012)
электрический контактный узел инертного анода для получения алюминия в солевом расплаве и способ его монтажа -  патент 2418889 (20.05.2011)
анодное устройство алюминиевого электролизера с обожженными анодами -  патент 2405866 (10.12.2010)
катоды для алюминиевых электролизеров с пазом неплоской конфигурации -  патент 2403324 (10.11.2010)

Класс C25C3/12 аноды

Наверх