способ получения керамического фильтрующего элемента

Классы МПК:C04B35/10 на основе оксида алюминия
C04B38/00 Пористые строительные растворы, бетон, искусственные камни или керамические изделия; получение их
B01D69/00 Полупроницаемые мембраны для процессов разделения или устройств, отличающиеся формой, структурой или свойствами; способы изготовления, специально предназначенные для этих целей
B01D71/02 неорганический материал
Автор(ы):, , , ,
Патентообладатель(и):Закрытое акционерное общество Научно-технический центр "Бакор"
Приоритеты:
подача заявки:
2001-10-26
публикация патента:

Изобретение относится к керамическому материаловедению, в частности к процессам изготовления керамических фильтрующих элементов, предназначенных для фильтрации пульп и стоков гальванических производств. Технический результат изобретения: исключение неоднородностей в объеме фильтрующего элемента, снижение гидравлического сопротивления фильтрующего слоя и, как следствие, повышение производительности фильтрующих установок. На этапе подготовки пластической массы в нее вводят электрокорунд М40, бентонит и сульфатно-спиртовую бражку при содержании компонентов, мас.%: А12О3 65-78, бентонит 10-30, ССБ 5-12. Пластичную массу помещают в пресс-форму заданной конфигурации и размеров, прессуют две составные части пористого носителя с зеркальным отображением, сушат, обжигают при температурах плавления бентонита 1250способ получения керамического фильтрующего элемента, патент № 220454250oС. Полученные составные части обрабатывают по посадочным плоскостям, наносят на посадочные плоскости клеющие компоненты, производят сборку. На открытые поверхности пустотелого, пористого носителя напыляют суспензию, содержащую электрокорунд М3 или М5 и алюмохромфосфатное связующее, выдерживают при комнатной температуре и термообрабатывают при температуре, обеспечивающей завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя. 2 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Способ получения керамического фильтрующего элемента, включающий подготовку пластичной массы, содержащей электрокорунд и глиносодержащий компонент, формирующие химический состав материала пористого носителя, и технологическую связку, формование составных частей пористого носителя, их сушку и спекание, нанесение суспензии для образования мембранного слоя и термообработку, отличающийся тем, что на этапе подготовки пластичной массы в нее вводят электрокорунд М40, бентонит и в качестве технологической связки сульфатно-спиртовую бражку - ССБ при содержании компонентов, мас. %:

Электрокорунд М40 - 65-78

Бентонит - 10-30

ССБ - 5-12

при формовании прессуют две составные части пористого носителя с зеркальным отображением и спекают их при температуре плавления бентонита, перед сборкой полученные составные части обрабатывают по посадочным плоскостям, наносят на посадочные плоскости клеющие компоненты, а при образовании мембранного слоя используют суспензию, содержащую в качестве наполнителя электрокорунд М3 или М5 и алюмохромфосфатное связующее, сушку производят при комнатной температуре и термообрабатывают при температуре, обеспечивающей завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя.

Описание изобретения к патенту

Изобретение относится к керамическому материаловедению, в частности к процессам изготовления керамических фильтрующих элементов, предназначенных для фильтрации пульп и стоков гальванических производств.

Известен способ получения керамического фильтрующего элемента, включающий подготовку пластичной массы, содержащей компоненты, формирующие химический состав материала пористого носителя, и технологическую связку, формование составных частей пористого носителя, их сушку и спекание, сборку, нанесение суспензии для образования мембранного слоя, сушку и термообработку (DE 3641057 C2, кл. С 04 В 38/00, С 04 В 38/08, B 01 D 46/10, 1998).

Недостаток известного способа заключается в том, что при шликерном литье в гипсовые формы толщина и скорость набора мембранного слоя определяется общей пористостью, ее распределением и величиной пор гипсовой формы и в случае получения пустотелых изделий практически не может быть проконтролирована. Это приводит к разнотолщинности мембранного слоя и изменению гидравлического сопротивления в локальных областях изделия. К идентичному эффекту приводит операция заполнения внутреннего объема элементами пористого носителя, в результате которой происходит неконтролируемая укладка элементов пористого носителя с различной поверхностью соприкосновения с мембранным слоем. В результате обжига в этих областях происходит спекание материала пористого носителя и мембранного слоя, что конструктивно приводит к увеличению размеров фильтрующего слоя и гидравлического сопротивления в несколько раз. В этой ситуации мембранный слой имеет значительный разброс проницаемости и физико-механических свойств в объеме фильтрующего элемента, что снижает качество изделия в целом.

По технической сущности наиболее близким к предлагаемому является способ получения керамического фильтрующего элемента, включающий подготовку пластичной массы, содержащей электрокорунд и глиносодержащий компонент, формирующие химический состав материала пористого носителя, и технологическую связку, формование составных частей пористого носителя, их сушку и спекание, нанесение суспензии для образования мембранного слоя и термообработку (Патент SU 1661167 А1, кл. С 04 В 38/00, 03.10.88 г.).

Однако известный способ получения фильтрующего элемента во многих случаях не позволяет получить однородность пористой структуры слоя. Мембранный слой подвержен образованию сетчатых дефектов за счет усадки при сушке и спекании, в зависимости от концентрации жидкости в суспензии и совместимости усадок пористого носителя и мембранного слоя. Это приводит к снижению производительности устройства.

Техническим результатом является разработка способа получения керамических фильтрующих элементов, обеспечивающего исключение неоднородностей в объеме фильтрующего элемента, снижение гидравлического сопротивления фильтрующего слоя и, как следствие, повышение производительности керамического фильтрующего элемента.

Достигается это тем, что в способе получения керамического фильтрующего элемента, включающем подготовку пластичной массы, содержащей электрокорунд и глиносодержащий компонент, формирующие химический состав материала пористого носителя, и технологическую связку, формование составных частей пористого носителя, их сушку и спекание, нанесение суспензии для образования мембранного слоя и термообработку, согласно изобретению на этапе подготовки пластичной массы в нее вводят электрокорунд М40, бентонит и в качестве технологической связки сульфатно-спиртовую бражку-ССБ при содержании компонентов, мас.%:

Электрокорунд М40 - 65-78

Бентонит - 10-30

ССБ - 5-12

при формовании прессуют две составные части пористого носителя с зеркальным отображением и спекают их при температуре плавления бентонита, перед сборкой полученные составные части обрабатывают по посадочным плоскостям, наносят на посадочные плоскости клеящие компоненты, а при образовании мембранного слоя используют суспензию, содержащую в качестве наполнителя электрокорунд М3 или М5 и алюмохромфосфатное связующее, сушку производят при комнатной температуре и термообрабатывают при температуре, обеспечивающей завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя.

Сущность заявляемого технического решения заключается в том, что выполнение предлагаемого способа согласно вышеописанной последовательности операций позволяет получить керамический фильтрующий элемент с заданной пористостью, прочностью и с повышенными фильтрационными возможностями.

Сравнение предложенного способа с прототипом позволяет утверждать о соответствии критерию "новизна", а отсутствие отличительных признаков в аналогах говорит о соответствии критерию "изобретательский уровень".

Предварительные испытания подтверждают возможность широкого промышленного применения.

На фиг. 1, 2 представлена конструкция фильтрующего элемента, полученного заявленным способом.

Способ получения керамического фильтрующего элемента включает подготовку пластичной массы, содержащей компоненты, формирующие химический состав материала пористого носителя, и технологическую связку, формование составных частей пористого носителя, их сушку, спекание и сборку.

Далее производят нанесение суспензии для образования мембранного слоя, сушку и термообработку.

Особенностью изобретения является то, что на этапе подготовки пластичной массы в нее вводят электрокорунд М40, бентонит и в качестве технологической связки сульфатно-спиртовую бражку - ССБ при содержании компонентов, мас.%:

Электрокорунд М40 - 65-78

Бентонит - 10-30

ССБ - 5-12

При формовании прессуют две составные части пористого носителя с зеркальным отображением, которые спекают при температуре плавления бентонита.

Перед сборкой полученные составные части обрабатывают по посадочным плоскостям, наносят на посадочные плоскости клеящие компоненты, а при образовании мембранного слоя используют суспензию, содержащую в качестве наполнителя электрокорунд М3 или М5 и алюмохромфосфатное связующее.

Сушку производят при комнатной температуре и термообрабатывают при температуре, обеспечивающей завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя.

Температура, обеспечивающая завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя, находится в диапазоне 300способ получения керамического фильтрующего элемента, патент № 220454250oС. При этом происходит образование необходимых химических связей, повышение адгезии и, как следствие, увеличение прочности на сдвиг между мембраной и пористым носителем.

Пример осуществления способа.

1. Для изготовления изделий были использованы исходные материалы:

1.1. Электрокорунд М3, М5, М40.

1.2. Бентонит.

1.3. Сульфатно-спиртовая бражка (ССБ).

1.4. Алюмохромфосфатное связующее (АХФС).

2. Электрокорунд М40, бентонит и ССБ при процентном содержании компонентов 70:23:7 соответственно помещали в смеситель и смесь гомогенизировали в течение 30 мин. Полученную пластическую массу коагулировали путем просева через сито 1 мм.

3. Расчетное количество формовочной массы помещали в разъемную пресс-форму и производили прессование при удельном давлении 50 кг/см2. В результате перемещения пуансона на фиксированную величину получали заготовки пористого носителя заданного размера и конфигурации.

4. Заготовки выдерживали при комнатной температуре в течение 24 ч и помещали в сушилку. Температура сушки поддерживалась в пределах 75способ получения керамического фильтрующего элемента, патент № 22045425oС, а изотермическая выдержка составляла 12 ч.

5. Высушенные заготовки с остаточной влажностью 0,1-0,2% помещали на карборундовые пластины и проводили обжиг, т.е. спекание, при температуре 1250способ получения керамического фильтрующего элемента, патент № 220454250oС с изотермической выдержкой в течение 2 ч. Заготовки после отжига подвергали визуальному контролю на наличие деформаций, сколов и трещин. Кондиционные экспериментальные образцы исследовали на плотность, пористость, величину водопроницаемости, прочность по стандартным методикам. В табл. 1 приведены характеристики материала образцов, полученные как среднеарифметические из 10 замеров - фрагментов, вырезанных из целиковых заготовок пористых носителей. Данные табл. 1 показывают, что предлагаемый способ позволяет получать стабильную структуру материалов пористого носителя с минимальными доверительными интервалами по физико-механическим характеристикам, что гарантирует исключение неоднородностей в материале и по объему пористого носителя, что и обеспечивает качество получаемых изделий.

6. Спеченные заготовки (фиг.1) (посадочные плоскости - 1, отверстия 2 для крепления, канал 3 для вывода фильтрата) обрабатывали по посадочным плоскостям 1 на плоскошлифовальном станке, с использованием алмазных кругов на медной связке, марки АС12 400/312 с крупностью частиц М2-01-150.

7. В качестве клеящего материала, наносимого на посадочные плоскости, использовали дисперсионную смесь, состоящую из порошка электрокорунда М5 и алюмохромфосфатного связующего, при соотношении 50:50. Внутреннюю часть пористого керамического носителя покрывали картонным трафаретом с таким условием, чтобы открытыми оставались посадочные поверхности. Краскопультом наносили клеящую смесь и производили наложение второго керамического носителя с зеркальным отражением посадочных плоскостей. Сборку выдерживали при комнатной температуре и на открытые рабочие поверхности наносили материал мембранного слоя.

8. Для нанесения мембранного слоя использовали дисперсную систему, содержащую 65% электрокорунда М3 и 35% АХФС. После тщательной гомогенизации в смесителе в течение 40-50 мин дисперсную систему наносили методом распыления на рабочей поверхности пористого керамического носителя. Экспериментально установлено, что выдержка на воздухе 20-24 ч дает возможность получить надежное адгезионное сцепление с прочностью на сдвиг ~3-4 МПа, которое гарантирует транспортировку заготовки без нарушения ее целостности на операцию обжига.

9. В результате предварительных исследований выявлена зависимость изменения адгезионной прочности на сдвиг мембранного слоя от поверхности пористого керамического носителя в зависимости от температуры термообработки. На основании полученных зависимостей термообработку проводили в интервале температур 300способ получения керамического фильтрующего элемента, патент № 220454250oС.

В результате выдержки при температуре 300oС в течение 10-15 ч была зафиксирована мембрана на пористом, керамическом носителе с прочностью на сдвиг 13способ получения керамического фильтрующего элемента, патент № 22045422 МПа. С повышением температуры сдвиговые напряжения монотонно уменьшаются. На фиг. 2 представлен разрез полученного фильтрующего элемента, где 4 - мембранный слой, 5 - фильтрующий центральный элемент, 6 - пористый носитель, 7 - пустотелый внутренний объем для сбора фильтрата.

10. Полученные пористые керамические фильтрующие элементы после термообработки подвергали визуальному контролю и испытаниям по стандартным методикам. Визуальный контроль не выявил искажений в геометрической форме, при увеличении в 40 раз на поверхности мембраны не обнаружены дефекты в виде отслоений, трещин или вздутий. Отсутствуют расслоения и между двумя составными частями пористого носителя, шов едва просматривается.

11. Данные табл. 2 показывают, что предлагаемый способ позволяет получать конкурентоспособные фильтрующие элементы, а прочностные характеристики и пропускная способность элементов позволяют увеличить рабочее давление фильтрации и производительность фильтрующих установок в целом.

Введение в пластичную массу электрокорунда М40 позволяет сформировать материал пористого носителя с заданной пористостью и средним размером пор.

Бентонит введен как керамическая связка, обеспечивающая получение необходимых физико-механических характеристик, а доверительный интервал его содержания объясняется тем, что при введении 10% получается непрочный материал, а свыше 30% резко снижается общая пористость.

Интервал содержания ССБ, вводимого для склеивания частиц порошковых компонентов при последующем прессовании, обеспечивает необходимую транспортную прочность заготовок пористого носителя, ниже 5% материал крошится, выше 12% - заготовка очень пластична и деформируется под действием изгибающих нагрузок от собственного веса.

Перемещение пластичной массы в пресс-форму необходимо для получения навески заданного количества и ее равномерного распределения в объеме пресс-формы.

Прессование заготовок с зеркальным отображением предусматривает получение составных деталей с фиксирующими элементами, необходимыми для сборки изделия с внутренней полостью.

Обжиг при температуре плавления бентонита обеспечивает формирование конфигурации с заданными технологическими допусками и физико-механическими характеристиками материала пористого керамического носителя.

Обработка по посадочным плоскостям необходима для снятия технологических посадочных пар.

Операция нанесения клеящих компонентов на посадочные плоскости обеспечивает соблюдение регламента по количеству и равномерному распределению склеивающего материала.

Сборка обеспечивает центровку двух сборочных элементов и получение формы и величины внутреннего объема фильтрующего элемента.

Напыление суспензии обеспечивает равномерное распределение материала и заданную толщину мембранного слоя.

Содержание электрокорунда М3 или М5, регулируемого содержания, позволяет получить пористые структуры с контролируемым средним радиусом пор, величиной пористости, ее распределением.

Алюмохромфосфатное связующее, например AlCrPO5, введено с позиций представлений о его клеящей способности, явлениях адгезии, что оно хорошо смачивает электрокорунд, обеспечивает сближение взаимодействующих фаз на расстояние, при котором возникают молекулярные силы, а при затвердевании практически отсутствует усадка, что исключает деформационные усилия, приводящие к дефектам или разрушению мембранного слоя.

Выдержка при комнатной температуре связана с условиями затвердевания, происходящими в дисперсных системах с использованием неорганических клеев и обеспечения адгезионной связи мембранного слоя с материалом пористого носителя.

Процесс термообработки при температурах получения максимальных прочностных связей мембранного слоя с пористым носителем обеспечивает завершение процессов взаимодействия алюмохромфосфатного связующего с материалом наполнителя и пористого носителя, что приводит к образованию химических связей, повышению адгезии, и, как следствие, к увеличению прочности на сдвиг между мембраной и пористым носителем.

Таким образом, в заявляемом способе достигается поставленный технический результат.

Класс C04B35/10 на основе оксида алюминия

проппант и способ его применения -  патент 2521680 (10.07.2014)
совокупность керамических частиц и способ ее изготовления (варианты) -  патент 2516421 (20.05.2014)
способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты) -  патент 2507178 (20.02.2014)
керамическое изделие и способ его изготовления -  патент 2478597 (10.04.2013)
высокопрочные расклинивающие наполнители -  патент 2473513 (27.01.2013)
способ изготовления корундовых изделий -  патент 2470896 (27.12.2012)
шихта и легированный шпинельный материал, полученный из нее -  патент 2433981 (20.11.2011)
способ получения теплоизоляционного гексаалюминаткальциевого материала -  патент 2433106 (10.11.2011)
способ изготовления вакуум-плотных изделий из керамического материала для электронной техники -  патент 2427554 (27.08.2011)
наноразмерное анионо-дефектное вещество на основе оксида алюминия для люминесцентного дозиметра ионизирующих излучений -  патент 2424273 (20.07.2011)

Класс C04B38/00 Пористые строительные растворы, бетон, искусственные камни или керамические изделия; получение их

Класс B01D69/00 Полупроницаемые мембраны для процессов разделения или устройств, отличающиеся формой, структурой или свойствами; способы изготовления, специально предназначенные для этих целей

функционализированные тонкопленочные полиамидные мембраны -  патент 2519377 (10.06.2014)
трековая мембрана для фильтрации крови -  патент 2518972 (10.06.2014)
способ изготовления полого волокна на основе полиамидоимида и полое волокно -  патент 2510435 (27.03.2014)
способ получения композитной полимерной мембраны для обратного осмоса -  патент 2498845 (20.11.2013)
тонкие первапорационные мембраны -  патент 2492918 (20.09.2013)
способ наномодифицирования синтетических полимерных мембран -  патент 2492917 (20.09.2013)
композитная полимерная мембрана для нанофильтрации и способ ее получения -  патент 2492916 (20.09.2013)
молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей -  патент 2492914 (20.09.2013)
композиционная мембрана на основе высокопроницаемых стеклообразных полимеров -  патент 2491983 (10.09.2013)
способ получения композиционной катионообменной мембраны -  патент 2487145 (10.07.2013)

Класс B01D71/02 неорганический материал

композиционная ионообменная мембрана -  патент 2527236 (27.08.2014)
способ изготовления мембраны для выделения водорода из газовых смесей -  патент 2521382 (27.06.2014)
мембранный фильтрующий элемент для очистки агрессивных жидкостей -  патент 2519076 (10.06.2014)
твердооксидный композитный материал для мембран электрохимических устройств -  патент 2510385 (27.03.2014)
способ получения пористых, пленочных материалов на основе карбоксиметилцеллюлозы -  патент 2509784 (20.03.2014)
пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием -  патент 2506119 (10.02.2014)
твердый электролит на основе оксида церия и церата бария -  патент 2495854 (20.10.2013)
молекулярный фильтр для извлечения гелия из гелийсодержащих газовых смесей -  патент 2492914 (20.09.2013)
композиционный материал для фильтрационной очистки жидкости -  патент 2465951 (10.11.2012)
способ окислительного дегидрирования метанола -  патент 2443464 (27.02.2012)
Наверх