способ получения литой стали

Классы МПК:C21D8/12 при изготовлении изделий с особыми электромагнитными свойствами
C22C38/42 с медью
B22D11/00 Непрерывное литье металлов, те отливка изделий неограниченной длины
Автор(ы):, ,
Патентообладатель(и):Липецкий государственный технический университет
Приоритеты:
подача заявки:
2001-03-23
публикация патента:

Предлагается способ получения литой стали, применяемой для изготовления магнитопроводов постоянных электромагнитов детекторов мюонов ускорителей пучков высокой энергии, включающий выплавку в сталеплавильном агрегате, рафинирование и корректировку химического состава, разливку на машине непрерывного литья в слябы. При этом сталь содержит компоненты в следующем соотношении, % по массе: углерод 0,04-0,12, кремний 0,04-0,30, марганец 0,20-0,50, сера не более 0,025, фосфор не более 0,050, хром не более 0,10, медь не более 0,25, алюминий не более 0,028, никель не более 1,0, азот 0,005-0,012, железо остальное, а корректировку химического состава проводят следующим образом: соотношение содержаний углерода, кремния, марганца, алюминия и азота определяют из выражения: k=(200-м)/810, где м - заданная величина относительной магнитной проницаемости, определяют параметр k, величину которого поддерживают в пределах 0,031-0,062, а соотношение содержаний углерода, кремния, марганца, алюминия и азота определяют по формуле k=0,23[С] +0,10[Si] +0,05[Mn] +0,09[A1]+0,06[N]. Отношение содержаний алюминия к азоту численно не превышает 5,0, а марганца к сере численно равно не менее 20,0. Непрерывную разливку производят с массовым расходом жидкой стали, который определяют по формуле: М = Кспособ получения литой стали, патент № 2202631а/в, где М - массовый расход жидкой стали, кг/с; К - расходный коэффициент, равный 2,8-5,0 кг/с; а - ширина сляба, м; в - толщина сляба, м, причем температуру поверхности при выходе слябов из машины непрерывного литья выдерживают в пределах 700-850oС, затем слябы охлаждают в течение 0,5-2,0 ч до температуры 550-650oС и далее охлаждают в течение 30-50 ч до температуры 50-70oС. Техническим результатом является получение литой стали, которая при индукции 1,8 Тл имеет магнитную проницаемость 158,2-167,0. Сталь имеет предел прочности 310 МПа и предел текучести 189 МПа.

Формула изобретения

Способ получения литой стали, содержащей углерод, кремний, марганец, серу, фосфор, хром, медь, алюминий, никель, железо, и включающий выплавку в сталеплавильном агрегате, рафинирование и корректировку химического состава, разливку на машине непрерывного литья в слябы и охлаждение, отличающийся тем, что сталь дополнительно содержит азот при следующем соотношении ингредиентов, % по массе:

Углерод - 0,04 - 0,12

Кремний - 0,04 - 0,30

Марганец - 0,20 - 0,50

Сера - Не более 0,025

Фосфор - Не более 0,050

Хром - Не более 0,10

Медь - Не более 0,25

Алюминий - Не более 0,028

Никель - Не более 1,0

Азот - 0,005 - 0,012

Железо - Остальное

а корректировку химического состава проводят следующим образом: из выражения

k=(200-м)/810,

где м - заданная величина относительной магнитной проницаемости,

определяют параметр k, величину которого поддерживают в пределах 0,031-0,062, а соотношение содержаний углерода, кремния, марганца, алюминия и азота определяют по формуле

k=0,23[С]+0,10[Si]+0,05[Mn]+0,09[Al]+0,06[N],

где [С], [Si], [Mn], [Al], [N] - содержание соответствующих элементов, % по массе,

а отношение содержаний алюминия к азоту численно не превышает 5 и марганца к сере численно равно не менее 20, непрерывную разливку производят с массовым расходом жидкой стали, который определяют по формуле

М=Кспособ получения литой стали, патент № 2202631а/в,

где М - массовый расход жидкой стали, кг/с;

К - расходный коэффициент, равный 2,8-5,0 кг/с;

а - ширина сляба, м;

в - толщина сляба, м,

причем температуру поверхности при выходе слябов из машины непрерывного литья выдерживают в пределах 700-850oС, затем слябы охлаждают в течение 0,5-2,0 ч до температуры 550-650oС и далее охлаждают в течение 30-50 ч до температуры 50-70oС.

Описание изобретения к патенту

Изобретение относится к металлургии, конкретно к производству стали, применяемой для изготовления магнитопроводов постоянных электромагнитов детекторов мюонов ускорителей пучков высокой энергии.

Развитие науки в настоящее время требует создания сверхмощных ускорителей пучков высокой энергии. Конструкция магнитопровода такого ускорителя очень металлоемка, в отдельных случаях вес магнитопровода будет достигать 30 тыс. т. До сих пор магнитопроводы ускорителей по весу не превышали 30 т и собирались из листов горячекатаной стали. Использование листов при сборке магнитопровода весом до 30 тыс. т - очень длительная и кропотливая операция. Целесообразнее для этой цели использовать литую сталь в виде крупногабаритных заготовок-слябов, получаемых процессом непрерывной разливки. При этом стоимость магнитопровода снижается на 30%. Для стабильности конструкции магнитопровода, предотвращения изменения его формы и размеров слябы литой стали должны обладать определенными механическими свойствами: предел прочности не ниже 300 МПа, предел текучести не менее 170 МПа, относительное удлинение не менее 27%. Для создания необходимого магнитного потока в магнитопроводе литая сталь должна также иметь величину относительной магнитной проницаемости 150-175 с точностью способ получения литой стали, патент № 22026313,0% при индукции 1,8 Тл.

Известна горячекатаная толстолистовая сталь марки AISI 1010 (США) со следующим химическим составом (% по массе) [Material Specification Low Carbon Steel for SDS Muon Barrel Toroid (SDT-000072) SSCL, November 20, 1992.]:

Углерод - 0,08 - 0,13

Кремний - 0,12 - 0,35

Марганец - 0,30 - 0,60

Сера - Не более 0,050

Фосфор - Не более 0,040

Хром - Не более 0,30

Медь - Не более 0,40

Молибден - Не более 0,30

Никель - Не более 0,40

Железо - Остальное

Эта сталь имеет величину относительной магнитной проницаемости 164 при индукции 1,8 Тл, механические свойства: предел прочности 310-450 МПа, предел текучести не ниже 200 МПа и относительное удлинение не ниже 38%. Недостатком этой стали является невозможность получения точности способ получения литой стали, патент № 22026313,0% заданной величины относительной магнитной проницаемости. Кроме того, в этой стали вышеуказанные свойства получаются только после горячей прокатки и ее можно использовать только в виде горячекатаного проката.

Существует способ производства стали со следующим соотношением компонентов, мас.%:

Углерод - 0,03 - 0,06

Кремний - 0,01 - 0,03

Марганец - 0,21 - 0,30

Сера - 0,006 - 0,018

Фосфор - 0,006 - 0,019

Хром - 0,01 - 0,02

Медь - 0,02 - 0,16

Алюминий - 0,034 - 0,067

Никель - 0,01 - 0,03

Железо - Остальное

включающий выплавку в конвертере, рафинирование, корректировку химического состава, разливку на машине непрерывного литья в слябы [И.В. Франценюк, Л. И. Франценюк. Современное металлургическое производство. М.: Металлургия, 1995, с. 31-34]. Литая сталь такого химического состава отвечает всем вышеуказанным требованиям по механическим свойствам, однако требуемой магнитной проницаемости в ней не достигается.

По мнению авторов предлагаемого способа наиболее близким по технической сущности и химическому составу стали является указанный способ производства стали.

Задачей предлагаемого изобретения является получение литой стали, обладающей определенными магнитными и механическими свойствами, что позволяет применять ее при изготовлении магнитопроводов постоянных электромагнитов детекторов мюонов ускорителей пучков высокой энергии.

Технический результат достигается тем, что в предлагаемом способе получения литой стали, содержащей углерод, кремний, марганец, серу, фосфор, хром, медь, алюминий, никель, железо, проводят выплавку в сталеплавильном агрегате, рафинирование и корректировку химического состава, разливку на машине непрерывного литья в слябы с последующим охлаждением. Сталь дополнительно содержит азот при следующем соотношении ингредиентов, % по массе:

Углерод - 0,04 - 0,12

Кремний - 0,04 -0,30

Марганец - 0,20 - 0,50

Сера - Не более 0,025

Фосфор - Не более 0,050

Хром - Не более 0,10

Медь - Не более 0,25

Алюминий - Не более 0,028

Никель - Не более 1,0

Азот - 0,005 - 0,012

Железо - Остальное

Корректировку химического состава проводят следующим образом: соотношение содержаний углерода, кремния, марганца, алюминия и азота определяют из выражения

k=(200-м)/810,

где м - заданная величина относительной магнитной проницаемости, k - параметр соотношения содержаний этих элементов, величину которого поддерживают в пределах 0,031-0,062 и определяют по формуле:

k = 0,23[С] + 0,10[Si] + 0,05[Mn] + 0,09[Аl] + 0,06[N],

где [С], [Si], [Mn], [Al], [N] - содержание в % по массе соответствующих элементов, а отношение содержаний алюминия к азоту численно не превышает 5,0 и марганца к сере численно равно не менее 20,0.

Непрерывную разливку производят с массовым расходом жидкой стали, который определяют по формуле:

М=Кспособ получения литой стали, патент № 2202631a/в,

где М - массовый расход жидкой стали, кг/с; К - расходный коэффициент, равный 2,8-5,0 кг/с; а - ширина сляба, м; в - толщина сляба, м, причем температуру поверхности при выходе слябов из машины непрерывного литья выдерживают в пределах 700-850oС, затем слябы охлаждают в течение 0,5-2,0 ч до температуры 550-650oС и далее охлаждают в течение 30-50 ч до температуры 50-70oС.

Магнитная проницаемость и механические свойства определяются химическим составом и структурой стали, внутренними напряжениями, возникающими при охлаждении слябов. С учетом влияния вышеперечисленных химических элементов на магнитную проницаемость были рассчитаны их предельные содержания в стали, исключающие выделение при охлаждении мелкодисперсных фаз при рекомендуемых режимах разливки и охлаждения слябов (нитриды, сульфиды, карбиды). Мелкодисперсные фазы снижают магнитную проницаемость и исключают возможность получения требуемой. При этом рассматривалось также влияние этих химических элементов на механические свойства стали. Влияние химических элементов на механические свойства стали проявляется через упрочнение твердого раствора. Именно поэтому необходимо поддерживать определенное соотношение между содержаниями марганца и серы, алюминия и азота и использовать предлагаемый способ получения стали. Структура литой стали зависит не только от ее химического состава, но и от режимов разливки и последующего охлаждения. В предлагаемом способе эти режимы подобраны таким образом, чтобы исключить выделение мелкодисперсных фаз и формирование высокого уровня внутренних напряжений, получить структуру в средней части сляба без ликваций и рыхлостей.

Попытка разливки стали предлагаемого состава по режимам известного способа позволила получить относительную магнитную проницаемость в диапазоне 150-175 с точностью способ получения литой стали, патент № 22026313,0% при индукции 1,8 Тл. Однако требуемых механических свойств получено не было. Значения пределов прочности и текучести были ниже требуемых. Анализ структуры стали показал, что это связано с повышенной рыхлостью сердцевины сляба.

Для устранения этого регламентирован расход жидкой стали при разливке. Для устранения возможности выделения мелкодисперсных фаз и возникновения термических напряжений охлаждение стали после выхода из кристаллизатора от температур 700-850oС проводится в течение 0,5-2,0 ч до температуры 550-650oС и далее в течение 30-50 ч до температуры 50-70oС. При разливке и охлаждении стали химического состава известного способа по этим режимам не было получено необходимой магнитной проницаемости из-за выделения нитридов алюминия.

Этот комплекс технических решений позволил получить литую сталь с относительной магнитной проницаемостью 150-175 с точностью способ получения литой стали, патент № 22026313,0% при индукции 1,8 Тл и механическими свойствами.

Пример осуществления способа получения литой стали с заявляемым соотношением компонентов

Для магнитопровода массой 16000 т постоянного магнита детектора мюонов сверхмощного ускорителя протонов (с энергией протонов 40 ТэВ) требовалась сталь с величиной относительной магнитной проницаемости 163способ получения литой стали, патент № 22026313,0% при индукции 1,8 Тл и механическими свойствами - способ получения литой стали, патент № 2202631в не ниже 300 МПа, способ получения литой стали, патент № 2202631т не ниже 170 МПа и d не менее 27%.

Согласно

k=(200-м)/810=(200-163)/810=0,045,

что укладывается в регламентацию этого параметра - 0,031-0,062.

Выплавили сталь следующего химического состава, % по массе:

Углерод - 0,078

Кремний - 0,093

Марганец - 0,30

Сера - 0,014

Фосфор - 0,016

Хром - 0,08

Медь - 0,15

Алюминий - 0,026

Никель - 0,05

Азот - 0,009

Железо - Остальное

чтобы согласно уравнению

k = 0,23[С] + 0,10[Si] + 0,05[Mn] + 0,09[Аl] + 0,06[N],

величина k равнялась 0,045.

k=0,23способ получения литой стали, патент № 22026310,078+0,10способ получения литой стали, патент № 22026310,093+0,05способ получения литой стали, патент № 22026310,30+0,09способ получения литой стали, патент № 22026310,026+0,06способ получения литой стали, патент № 22026310,009=0,04512.

Отношение содержаний алюминия к азоту равнялось 3,0 (по заявляемым параметрам не должно превышать 5), марганца к сере - 21,4 (по заявляемым параметрам должно быть не менее 20).

Сталь выплавляли в конвертере и после раскисления получили следующий химический состав, мас.%: 0,05 С; 0,09 Si; 0,15 Mn; 0,010 Al; 0,005 N. Затем для корректировки химического состава и усреднения его по объему ковша проводили обработку стали на агрегате внепечной обработки. Продували сталь аргоном и одновременно добавляли углеродистый ферромарганец и вводили алюминиевую проволоку до содержания алюминия 0,030%. Металл разливался на машине непрерывного литья с открытой струей на участке сталеразливочный ковш - промежуточный ковш. За счет контакта жидкой стали с атмосферой происходило насыщение ее азотом до 0,009% и снижение содержания алюминия до 0,026%. В результате химический состав стали соответствовал заданному.

Сталь разливали в слябы на машинах непрерывного литья с размерами поперечного сечения 250способ получения литой стали, патент № 22026311550 мм. При этом поддерживали расход жидкой стали в диапазоне:

М=(2,8-5,0)способ получения литой стали, патент № 22026311,55/0,25=17,36-31,0 кг/с.

Средний расход жидкой стали составлял 29,84 кг/с. Поддерживание такого расхода жидкой стали позволило осуществлять разливку стали со стабильной скоростью вытягивания слитка 0,6 м/мин. При существующей интенсивности охлаждения слитков в машине непрерывного литья такая скорость вытягивания слитка позволила получать температуру поверхности слитка при выходе из машины 750oС. На транспортных рольгангах в условиях естественной конвекции слябы монотонно охлаждались до температуры 600oС в течение 0,6-0,8 ч. После этого слябы складировали в стопы по десять штук. В условиях естественной конвекции это обеспечило охлаждение до температуры поверхности 60oС за 40-48 ч.

Слябы подвергались механической обработке до требуемой конфигурации по периметру и снимался поверхностный слой до толщины сляба 219 мм. Затем их использовали для сборки магнитопровода в качестве основных его элементов.

Измерения относительной магнитной проницаемости в полученной стали показали, что ее величина при индукции 1,8 Тл находится в пределах 158,2-167,0, что соответствует заданной величине 163способ получения литой стали, патент № 22026313%. Механические испытания показали, что полученная литая сталь имеет предел прочности 310 МПа, предел текучести 189 МПа и относительное удлинение 32%.

Из приведенного примера следует, что разработано техническое решение, позволяющее выполнять поставленную задачу.

Литая сталь, полученная с отклонениями соотношений содержания химических элементов, не имела требуемого комплекса магнитных и механических свойств. Это исключало возможность ее использования в виде материала магнитопроводов.

Использование заявляемого технического решения позволяет повысить точность детектора мюонов как физического прибора и снизить капитальные затраты на его изготовление, по сравнению с использованием горячекатаной стали.

Исследование патентной и научно-технической литературы показало, что технические решения с совокупностью существенных признаков предлагаемого способа отсутствуют. Предлагаемый способ отвечает критерию "новизна". Только совокупность существенных признаков предлагаемого способа позволяет решить поставленную задачу, поэтому признаки следует рассматривать в совокупности.

Класс C21D8/12 при изготовлении изделий с особыми электромагнитными свойствами

способ производства холоднокатаной полуобработанной легированной электротехнической стали -  патент 2529326 (27.09.2014)
способ получения листа из неориентированной электротехнической стали -  патент 2529258 (27.09.2014)
способ производства нетекстурированной электротехнической стали с высокой магнитной индукцией -  патент 2527827 (10.09.2014)
лист из текстурированной электротехнической стали -  патент 2526642 (27.08.2014)
лист из текстурированной электротехнической стали и способ его изготовления -  патент 2524026 (27.07.2014)
способ производства особонизкоуглеродистой холоднокатаной изотропной электротехнической стали -  патент 2521921 (10.07.2014)
способ производства текстурованных листов из электротехнической стали -  патент 2519691 (20.06.2014)
способ производства высокопроницаемой анизотропной электротехнической стали -  патент 2516323 (20.05.2014)
способ производства текстурованного трасформаторного листа из тонкого сляба -  патент 2515978 (20.05.2014)
способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь -  патент 2514559 (27.04.2014)

Класс C22C38/42 с медью

способ производства холоднокатаной ленты из низкоуглеродистой стали для вырубки монетной заготовки -  патент 2516358 (20.05.2014)
способ производства листового проката из низколегированной трубной стали класса прочности к65 -  патент 2492250 (10.09.2013)
высокопластичная низкоуглеродистая сталь -  патент 2490354 (20.08.2013)
способ производства холоднокатаной ленты для высокоскоростной холодной вырубки -  патент 2479642 (20.04.2013)
способ производства листов из низколегированной трубной стали класса прочности к60 -  патент 2479639 (20.04.2013)
способ производства листов из низколегированной трубной стали класса прочности к60 -  патент 2479638 (20.04.2013)
способ производства стальной полосы (варианты) -  патент 2478729 (10.04.2013)
трубная заготовка из легированной стали -  патент 2469107 (10.12.2012)
способ производства листов из низколегированной трубной стали класса прочности к60 -  патент 2465345 (27.10.2012)
способ производства листов из низколегированной трубной стали класса прочности к60 -  патент 2465344 (27.10.2012)

Класс B22D11/00 Непрерывное литье металлов, те отливка изделий неограниченной длины

машина непрерывного литья с роторным кристаллизатором -  патент 2528925 (20.09.2014)
горячекатаная тонкая литая полоса и способ ее изготовления -  патент 2528920 (20.09.2014)
непрерывный способ литья и устройство для производства черновых профилей, в особенности двойных т-образных профилей -  патент 2528562 (20.09.2014)
способ закрепления затравки в установке непрерывной разливки и установка непрерывной разливки с затравкой -  патент 2527568 (10.09.2014)
способ и устройство для изоляции слитка при запуске -  патент 2527535 (10.09.2014)
способ получения аморфных или мелкокристаллических материалов для изготовления спеченных постоянных магнитов методом сверхбыстрой закалки расплава -  патент 2527105 (27.08.2014)
способ непрерывной разливки стали и способ производства стального листа -  патент 2520891 (27.06.2014)
способ регулирования для зеркала расплава в кристаллизаторе непрерывной разливки -  патент 2520459 (27.06.2014)
форма для непрерывного литья расплавленного металла и система литья -  патент 2520303 (20.06.2014)
способ совмещенного литья, прокатки и прессования и устройство для его реализации -  патент 2519078 (10.06.2014)
Наверх