способ переработки легированного металлического плутония

Классы МПК:C01G56/00 Соединения трансурановых элементов
G21C19/46 водные способы 
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара",
Министерство Российской Федерации по атомной энергии
Приоритеты:
подача заявки:
2000-10-23
публикация патента:

Изобретение относится к переработке отходов ядерной техники и предназначено для переработки легированного металлического плутония. Сплав плутоний-галлий растворяют в качестве анода электролизом раствора хлористого аммония. Используют раствор хлористого аммония с концентрацией 3-20 мас.%. Одновременно с растворением сплава происходит осаждение гидроксида плутония. Осадок гидроксида плутония отделяют от раствора, содержащего галлий. Осаждают галлий путем разложения гидроксида аммония. Полученный раствор хлористого аммония используют для растворения сплава. Результат способа - упрощение процесса, уменьшение потерь плутония и создание безотходной технологии. 2 з.п. ф-лы, 1 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Способ переработки легированного металлического плутония, включающий растворение сплава плутоний-галлий и осаждение гидроксида плутония, отличающийся тем, что растворение ведут электролизом раствора хлористого аммония с использованием сплава плутоний-галлий в качестве анода, осаждение гидроксида плутония осуществляют одновременно с растворением сплава, отделяют осадок гидроксида плутония от раствора, содержащего галлий, и осаждают галлий с получением раствора хлористого аммония, который используют для растворения сплава.

2. Способ по п. 1, отличающийся тем, что используют раствор хлористого аммония с концентрацией 3-20 мас. %.

3. Способ по п. 1 или 2, отличающийся тем, что осаждение галлия ведут путем разложения гидроксида аммония.

Описание изобретения к патенту

Изобретение относится к способу получения гидроксида плутония и может быть использовано в области ядерной техники, преимущественно при переработке отходов металлических изделий из плутония.

Известен способ получения гидроксидов плутония, который предполагает последовательное проведение основных операций: растворение плутония в растворах соляной кислоты, превращение хлорида в нитрат плутония, очистка нитрата плутония экстракционными или сорбционными методами от примесей, осаждение плутония в виде гидроксидов, в качестве исходного материала для приготовления РuO2 [Поляков А.С., Захаркин Б.С., Борисов Л.М., Кучеренко B. C. , Соловьева Л.Н. Материалы международной конференции по ядерному топливному циклу. Версаль, Франция. 11-14 сентября 1995 г., с.640-651].

Недостатком этого способа является то, что он многоступенчатый, требующий применения реагентов, для повторного использования которых необходимы дополнительные операции регенерации (дистилляция НСl, очистка экстрагентов и т.д.), а также невосполнимых реагентов, например, необходимых для проведения операций осаждения. Наряду с этим, при проведении процессов осаждения образуются жидкие радиоактивные отходы, приводящие к большому количеству невосполнимых потерь плутония и к повышению экологической опасности.

Наиболее близким к предложенному по технической сущности и достигаемому результату является способ получения гидроксидов плутония, например, из сплава плутония с галлием с использованием последовательно операций растворения в смеси азотной и плавиковой кислот при температуре кипения, введения ионов алюминия для комплексования ионов фтора, экстракционной очистки плутониевых растворов от галлия и фтор-иона и других вносимых посторонних элементов, осаждения гидроокисей плутония из реэкстракта с последующей прокалкой гидроксидов плутония для получения РuО2 [Поляков А.С., Захаркин Б.С., Борисов Л.М., Кучеренко B.C., Соловьева Л.Н. Материалы международной конференции по ядерному топливному циклу. Версаль, Франция. 11-14 сентября 1995 г. , с.640-651].

Этот способ применяет на первой стадии операцию растворения сплава плутония в смеси азотной и плавиковой кислот при температуре кипения в течение 2-4 часов. Недостатками этого процесса являются: коррозионная и экологическая опасность кипящих растворов смеси азотной и плавиковой кислот и газовых сбросов, а также трудности извлечения из растворов, содержащих фторид-ионы. [Г.П. Никитина и др. Существующие методы растворения диоксида плутония. I. Растворение в минеральных кислотах и их смесях, Радиохимия. Том 39, выпуск 1, 1997, стр.21]. Полученные азотнокислые растворы содержат ионы фтора. Для связывания их в виде комплексных соединений в растворы вносят ионы алюминия, количество которых должно быть в три раза больше мольного количества ионов фтора. Эта операция приводит к значительному увеличению содержания солей в растворах, которые в дальнейшем удаляются в виде жидких радиоактивных отходов.

Далее раствор плутония поступает на экстракционную или сорбционную очистку. В результате проведения операций очистки экстракцией или сорбцией получаются азотнокислые растворы плутония, очищенные от посторонних компонентов, и большое количество жидких радиоактивных отходов, содержащих кроме небольших количеств плутония другие компоненты, используемые при проведении процесса, и сопутствующие примеси. Очищенные азотнокислые растворы плутония поступают на операцию осаждения гидроокисей плутония. В результате проведения операции осаждения образуются две фазы: твердая фаза, содержащая гидроокиси плутония, и жидкая фаза (маточник), содержащая остаточное количество плутония.

Недостатками известного способа являются также многостадийность проведения процесса получения гидроксидов из металлического плутония, требующего длительного времени, образование большого количества потерь плутония в виде вторичных радиоактивных отходов и необходимость использования большого количества невосполнимых реагентов.

Указанные недостатки являются следствием необходимости использования нескольких стадий при получении гидроксида плутония при переработке его металлизированных форм: растворение в смеси азотной и фтористо-водородной кислот, экстракционная или сорбционная очистка и аммиачное осаждение гидроксида плутония.

Техническим результатом при реализации изобретения является упрощение процесса, уменьшение потерь плутония и создание безотходной технологии.

Представленный технический результат достигается тем, что способ переработки легированного металлического плутония включает растворение сплава плутоний-галлий и осаждение гидроксида плутония, причем растворение ведут электролизом раствора хлористого аммония с использованием сплава плутоний-галлий в качестве анода, осаждение гидроксида плутония осуществляют одновременно с растворением сплава, отделяют осадок гидроксида плутония от раствора, содержащего галлий, и осаждают галлий с получением раствора хлористого аммония, который используют для растворения сплава.

В частном варианте используют раствор хлористого аммония с концентрацией 3-20 мас.%.

В другом частном варианте осаждение галлия ведут путем разложения гидроксида аммония.

Создавая определенные условия при получении гидроксидов из металлизированных форм плутония, например металлического сплава плутония с галлием, можно обеспечить растворение плутония, его осаждение в виде малорастворимых гидроксидных соединений и очистку плутония от галлия.

Растворение осуществляется за счет пропускания электрического постоянного тока через электролит подачей напряжения на электроды. При этом в качестве анода применяется изделие из легированного плутония. Величина напряжения должна быть больше окислительно-восстановительного потенциала для плутония (например, Е0 Pu(3+)/Pu=2,03 В, E0 Pu(4+)/ Pu(3+)=-0,9819 В [Плутоний. Справочник. М.: Атомиздат. Т.1, 1971, стр.13, 138]), а величиной тока можно регулировать скорость растворения плутония.

Состав электролита должен иметь наряду с высокой электропроводностью среду (~нейтральную), в которой растворенный плутоний осаждается в виде гидроксидов. Электролиты с нейтральной средой образуются сочетанием ионов сильной кислоты и сильного основания, слабой кислоты и слабого основания. Однако свойствами высокой электропроводности будут обладать электролиты, образующиеся сочетанием ионов сильной кислоты и сильного основания, например КСl, NaCl, NaNO3, NH4NO3, NН4Сl и т.д. Так как плутоний склонен к пассивации [Плутоний. Справочник. М.: Атомиздат. Т.1, 1971, стр.13, 138], то в состав электролита необходимо вводить ионы-активаторы для депассивации поверхности плутония. Предлагается в качестве электролита использовать растворы солей, которые содержат ионы-активаторы (Сl- - является ионом-активатором).

Получение гидроксида плутония, например, из сплава плутония с галлием предлагаемым способом исключает операцию рубки изделий из плутония и совмещает операции растворения, очистки плутония от галлия и осаждения плутония. Очистка плутония от галлия будет достигаться при этом по мере осаждения гидроокиси плутония, сопровождающегося повышением рН среды электропроводящего водного раствора, в которой соединения галлия переходят в растворимое состояние. Распределение плутония в твердую фазу, а галлия в жидкую позволяет очистить плутоний от галлия. Если в качестве водного электропроводящего раствора применить раствор соли аммония, то при повышении рН среды, сопровождающем осаждение гидроксида плутония, в водном растворе образуется избыток NH4OH, легко и быстро удаляющийся из жидкой фазы, например, при умеренном нагревании раствора по реакции способ переработки легированного металлического плутония, патент № 2200133 Восстановление исходных свойств электролита осуществляется также полным перемешиванием использованного раствора NH4Cl.

При этом из раствора выделяется галлий в виде малорастворимых соединений, а свойства электролита восстанавливаются, и он может использоваться повторно.

Зависимость удельной электропроводности водного раствора хлористого аммония от его концентрации в растворе представлена на чертеже.

В зависимости от предъявляемых требований к конечному продукту выбор концентрации хлористого аммония осуществляется в диапазоне 3-20%. При содержании хлористого аммония в растворе ниже 3% электропроводность раствора будет слишком низкой и для поддержания высокой скорости анодного растворения необходимо повышать подаваемое на электроды напряжение. Использование растворов с содержанием хлористого аммония в растворе выше 20% приведет к повышенному механическому захвату хлористого аммония в гидроксиде плутония, что может привести к значительным затруднениям при прокалке гидроксида плутония из-за увеличения содержания коррозионно-активного соединения (NH3способ переработки легированного металлического плутония, патент № 2200133HCl).

Пример 1.

Получение гидроксида плутония из сплава плутония с галлием.

Для проведения экспериментальной проверки способа был использован образец сплава плутония с галлием в виде пластинки, у которой длина, ширина и толщина составляли соответственно 28 мм, 5 мм и 1 мм. Образец закреплялся на токоподводящей штанге, подключенной к положительному потенциалу внешнего источника напряжения, и опускался в водный раствор хлористого аммония на способ переработки легированного металлического плутония, патент № 22001332/3 своей длины. После того, как погруженная в водный раствор часть образца разрушилась под воздействием подаваемого на электроды напряжения, образовавшийся на дне аппарата осадок был отфильтрован, подсушен в комнатно-воздушной атмосфере и направлен на операцию прокалки (при 750oС в течение 2 час). В табл. 1 представлены результаты опыта.

Визуальные наблюдения за протеканием процесса показали, что образование осадка происходило у поверхности образца в течение всего воздействия электрического тока. Образующийся осадок черного цвета быстро оседал на дне аппарата. Примерно через 1 час после окончания процесса раствор стал полностью прозрачным и направлен на фильтрацию. В фильтрате определено содержание плутония (см. табл. 1). Значение величины рН-среды водного электропроводящего раствора непосредственно после окончания процесса составляла ~10. После слабого подогрева водного раствора значения рН-среды снизились до 7. При этом раствор становился светло- мутным. Раствор фильтруется, и фильтрат может быть использован в процессе повторно в качестве водного электропроводящего раствора. Выделенный осадок (гидроксид галлия) прокалили при ~750 oС в атмосфере воздуха в течение 2-х часов. После прокалки вес порошка (Gа2О3) составил 0,0297 г.

Пример 2.

Получение гидроксида плутония из сплава плутония с галлием.

Плутониевый стержень в качестве анода погружали в электролит - водный раствор 5% NH4Cl и пропускали постоянный ток напряжением 3-10 В, и анодной плотностью тока 0,025-0,01 А/см2. В результате проведения процесса конечное содержание Рu в виде гидроксида Рu=48-55 г/л. Раствор отфильтровали на бумажном фильтре. Гидроксидные осадки плутония испытали на растворимость в растворах 1-12 моль/л азотной кислоты. Раствор азотной кислоты вносили в количестве, которое необходимо, в основном, для растворения гидроксида плутония по реакции Рu(ОН)4+4НNО3=4Н2O+Рu(NО3)4.

Содержание Рu в фильтрате составило 4,2способ переработки легированного металлического плутония, патент № 220013310-3 г/л, фильтрат использован повторно для проведения процесса в качестве водного электропроводящего раствора.

Как видно из табл.2, высокие значения плотности тока приводят к повышению температуры электролита, которое создает условие для выделения в газовую фазу NH3. Для увеличения производительности установки необходимо обеспечивать охлаждение электролита <45С.

Таким образом, предложенный способ позволяет сократить количество стадий процесса получения гидроксидов плутония, время процесса и количество вторичных технологических отходов плутония и увеличить уровень экологической безопасности и, кроме того, дает возможность, во-первых, существенно облегченного перевода металлического плутония, легированного галлием, в растворимую форму с помощью растворения гидроксида плутония в минеральных кислотах, в частности, в растворах азотной кислоты без использования фторид-ионов и, во-вторых, получения оксида плутония, очищенного от галлия.

Класс C01G56/00 Соединения трансурановых элементов

способы приготовления оксалата актиноидов и приготовления соединений актиноидов -  патент 2505484 (27.01.2014)
способ растворения кремнийсодержащей пульпы -  патент 2472711 (20.01.2013)
способ растворения диоксид плутония содержащих материалов -  патент 2456687 (20.07.2012)
способ переработки отработанных стекловолокнистых аэрозольных фильтров -  патент 2456244 (20.07.2012)
способ растворения мокс-топлива -  патент 2451639 (27.05.2012)
способ получения твердого раствора диоксида плутония в матрице диоксида урана -  патент 2446107 (27.03.2012)
сорбент на основе уранилфторида и способ его получения -  патент 2422199 (27.06.2011)
способ соосаждения актиноидов с разной степенью окисления и способ получения смешанных соединений актиноидов -  патент 2408537 (10.01.2011)
электролизер для растворения оксидов металлов -  патент 2404130 (20.11.2010)
способ получения гексафторидов актинидных элементов и устройство для его осуществления -  патент 2394770 (20.07.2010)

Класс G21C19/46 водные способы 

способ реэкстракции плутония из органического раствора трибутилфосфата -  патент 2514947 (10.05.2014)
способ экстракционного извлечения урана и плутония -  патент 2513040 (20.04.2014)
способ выведения нептуния при фракционировании долгоживущих радионуклидов -  патент 2454740 (27.06.2012)
способ очистки регенерированного урана -  патент 2447523 (10.04.2012)
групповое разделение актинидов из сильнокислой водной фазы -  патент 2438200 (27.12.2011)
способ регенерации отработанного ядерного топлива и получения смешанного уран-плутониевого оксида -  патент 2431896 (20.10.2011)
способ отделения химического элемента от урана ( vi ) и способ переработки отработанного ядерного топлива -  патент 2429041 (20.09.2011)
устройство для очистки нитрата уранила от продуктов деления -  патент 2427938 (27.08.2011)
способ обработки отработанного ядерного топлива и используемый для этого центробежный экстрактор -  патент 2423743 (10.07.2011)
способ реэкстракции плутония из органического раствора трибутилфосфата -  патент 2410774 (27.01.2011)
Наверх